22/02(a) The University of Sydney

FUNDAMENTALS OF CHEMISTRY 1B - CHEM1002

SECOND SEMESTER EXAMINATION

CONFIDENTIAL

NOVEMBER 2002

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY	SID	
NAME	NUMBER	
OTHER	TABLE	
NAMES	NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 14 pages of examinable material.
- Complete the written section of the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a •.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question and a Periodic Table may be found on a separate data sheet.
- Pages 5, 15, 17, 19 & 20 are for rough working only.

OFFICIAL USE ONLY

Multiple choice section

\backslash		Marks
Pages	Max	Gained
210	48	

Short answer section

		Marks		
Page	Max	Gained	1	Marker
11	12			
12	8			
13	7			
14	12			
16	7			
18	6			
Total	52			
Check	Total			

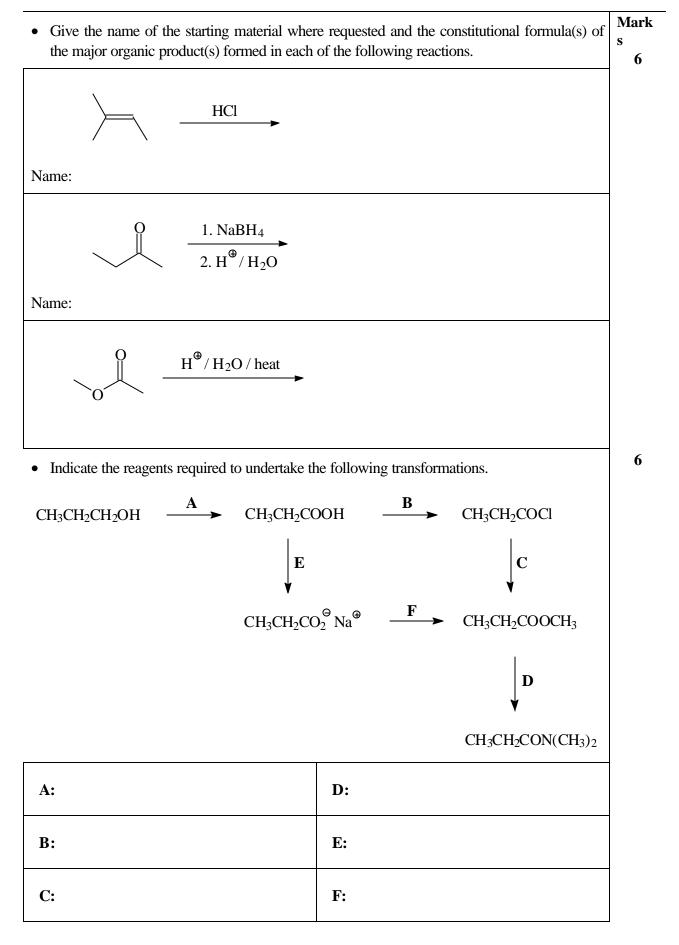
Marks 6

• Complete the following table.												
Molecule		electron pairs entral atom	Shape of molecule	Bond angle								
	Sigma	Lone										
CH ₄												
NH ₃												
H ₂ O												

• Use the concept of effective nuclear charge (Z_{eff}) to explain why the atomic radii of atoms DECREASE across any period, yet INCREASE down a group, in the periodic table.

• Why is the N=N bond stronger than the C=C bond?

• Distinguish between the terms "end point" and "equivalence point" in reference to a titration.


2

2

2

• (i) Write the electron configuration for the titanium atom.													
Titanium(IV) chloride dissolves in concentrated hydrochloric acid to give the complex ion $[TiC_{k}]^{2-}$.													
(ii) Wha	t is the oxidation number of the titaniu	$m in [TiC_{k}]^{2-?}$											
(iii) Wh	at is the coordination number of the tit	anium in [TiCk] ^{2–} ?											
(iv) Wh	at is the shape of the $[TiC_b]^{2-}$ ion?												
(v) Writ	e the electron configuration for the tita	anium ion present in the [Ti	$Cl_{6}]^{2-}$ ion.	-									
	2			-									
(vi) Wo	uld you expect the $[TiCl_6]^{2-}$ ion to be	coloured? Explain!											
 What is the pH of the solution obtained by adding 60.0 mL of 0.10 M NaOH to 50.0 mL of 0.10 M HCl? 													
		ANSWER:											

CHEM1002	2002-N-4	November 2002	22/02(a)								
	llowing solutions in water at 25 °C. Given the separate data		Mark s 7								
Benzoic acid (0.010 M)											
			_								
	ANSWER:		_								
A buffer solution made up	p of acetic acid (0.050 M) and sodium	acetate (0.10 M).	_								
	ANSWER:										
A buffer solution made up of acetic acid (0.050 M) and sodium acetate (0.10 M). Abuffer solution made up of acetic acid (0.050 M) and sodium acetate (0.10 M). ANSWER: Ammonia (0.10 M) (Hint: ammonia is a base)											
	ANSWER:		-								

• Alanine is a naturally occurring amino acid with the structure shown below.													
$H_{3}COOH$													
Indicate the hybridisation of all carbon atoms in alanine.													
#1	#2	#3											
What is the configuration of alanine in the above structure? Write (<i>R</i>) or (<i>S</i>).													
Write (<i>R</i>) or (<i>S</i>). Write the product of alanine with the following reagents.													
dilute HCl		dilute NaOH											
Alanine has a melting point of 297 °C, much higher than expected for a typical organic compound of this molecular mass. Suggest a reason for this.													
Draw the structure(s) the acids.	hat show how alanin	e may form part of a	polymer with other amino	-									
				1									

		22/0
In experiment E29, esters and Z .	are formed by the reaction of acetic anhydride with compounds Y	Mar s 6
ОН	OH OH COOH O O O O O O U U CH ₃ COCCH ₃	
Y	Z acetic anhydride	
Give the systematic name	for compound Y.	
Name the functional group	os present in compound Z.	
Draw the constitutional for with compound Z .	rmula(s) of the product(s) from the reaction of acetic anhydride	_
Experimentally, excess acc is the product of this hydro	etic anhydride is decomposed by hydrolysing it with water. What olysis reaction?	
		1

The University of Sydney

CHEM1002

SECOND SEMESTER EXAMINATION

NOVEMBER 2002

TIME ALLOWED: THREE HOURS

Numerical Data

Conversion factors

 $1 \text{ mL} = 10^{-3} \text{ L}$

Acid ionisation constants at 298 K

Acid	Formula	pK _a
ammonium ion	${ m NH_4}^+$	9.24
acetic acid	CH ₃ COOH	4.76
benzoic acid	C ₆ H ₅ COOH	4.20

Henderson-Hasselbalch equation

$$pH = pK_a + \log\frac{[A^-]}{[HA]}$$

Useful formulas

 $pK_{w} = pK_{a} + pK_{b} = 14.00$ $pK_{w} = pH + pOH = 14.00$

A periodic table is printed on the other side of this data sheet. Atomic weights are included in the periodic table.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	1 нуdrogen Н 1.008																	2 нешим Не 4.003
	З цітніцм Li	4 BERYLLIUM Be											5 boron B	6 CARBON C	7 ntrogen N	8 oxygen O	9 ^{fluorine} F	10 _{меом} Ne
	6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
	11 ^{зодіим} Na	12 magnesium Mg											13 ALUMINIUM Al	14 silicon Si	15 рнозрноrus Р	16 ^{SULFUR} S	17 CHLORINE Cl	18 Argon Ar
	22.99	24.31											26.98	28.09	30.97	32.07	35.45	39.95
	19 potassium K	20 CALCIUM	21 scandium Sc	22 тіталіцм Ті	23 vanadium V	24	25 manganese	26 IRON	27 COBALT	28 ^{NICKEL}	29 COPPER	30 ^{zinc}	31 GALLIUM	32 Germanium	33 ARSENIC	34 selenium Se	35 BROMINE	36 krypton Kr
	K 39.10	Ca 40.08	SC 44.96	11 47.88	v 50.94	Cr 52.00	Mn 54.94	Fe 55.85	Co 58.93	1NI 58.69	Cu 63.55	Zn 65.39	Ga 69.72	Ge 72.59	As 74.92	Se 78.96	Br 79.90	КГ 83.80
	37 RUBIDIUM	38 strontium	39 yttrium	40 zirconium	41 NIOBIUM	42 molybdenum	43 technetium	44 RUTHENIUM	45 RHODIUM	46 palladium	47 SILVER	48 cadmium	49 INDIUM	50 TIN	51 ANTIMONY	52 TELLURIUM	53 IODINE	54 XENON
	Rb	Sr	Y 88.91	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag 107.87	Cd	In	Sn	Sb	Te	I	Xe
	85.47 55 caesium	87.62 56 ваяіим	57-71	91.22 72 набліци	92.91 73	95.94 74 TUNGSTEN	[98.91] 75 RHENIUM	101.07 76 озмиим	102.91 77 ігідіцм	106.4 78 platinum	79 _{GOLD}	112.40 80 мерсику	114.82 81 тнаціим	118.69 82	121.75 83 ызмитн	127.60 84 POLONIUM	126.90 85 ASTATINE	131.30 86 RADON
	Cs	Ba		Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
	132.91	137.34		178.49		183.85	186.2	190.2	192.22	195.09	196.97	200.59	204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
	87 francium Fr	88 ^{RADIUM}	89-103	104 RUTHERFORDIN Rf	им 105 <u>dubnium</u> Db	106 seaborgium Sg	107 ^{вонкіим} Вћ	108 назяіим Н S	109 meitnerium Mt									
	[223.0]	[226.0]		[261]	[262]	[266]	[262]	[265]	[266]									
l	r]	r1		r]	1 []	1 [~~]	–]		L · ~J									
L	ANTHANID	DE 57	NUM CER	IUM P	59 Praseodymium	60 NEODYMIUM	61 PROMETHIUM	62 samarium	63 EUROPIUM	64 gadolinium		UM DYS		67	68 erbium	69 THULIUM	70 ytterbium	71
	S	La 138.9		e 0.12	Pr 140.91	Nd 144.24	Pm [144.9]	Sm 150.4	Eu 151.96	Gd 157.25	5 158.		v	Ho 64.93	Er 167.26	Tm 168.93	Yb 173.04	Lu 174.97

PERIODIC TABLE OF THE ELEMENTS

ACTINIDES	89 ACTINIUM	90 THORIUM	91 protactinium	92 uranium	93 NEPTUNIUM	94 plutonium	95 Americium	96 curium	97 BERKELLIUM	98 californium	99 EINSTEINIUM	100 Fermium	101 mendelevium	102 NOBELIUM	103 LAWRENCIUM	
ACTINIDES	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	ł
	[227.0]	232.04	[231.0]	238.03	[237.0]	[239.1]	[243.1]	[247.1]	[247.1]	[252.1]	[252.1]	[257.1]	[256.1]	[259.1]	[260.1]	ł