• 4 0 tetrahedral 109.5°

3 1 trigonal pyramidal 107°

2 2 bent 105°

Knowing the exact values of the bond angles for NH$_3$ and H$_2$O was not required, just the trend of decreasing values as the number of lone pairs increases.

• Going across a period, the addition of more electrons is accompanied by the addition of more protons in the nucleus. This results in greater attraction between the electrons and the nucleus and the size of the atoms decrease across the period. Going down a group, the outer electrons are screened from the nucleus by the inner electrons, the effective nuclear charge is less and the size of the atoms increase.

• N is a smaller atom than C (see above). The N atoms can therefore approach closer to each other than the C atoms and there is greater overlap of the orbitals. The greater the overlap, the stronger the bond.

• The endpoint is where the reaction is seen to come to an end (eg where the indicator changes colour). The equivalence point is where the number of moles of reactant added is exactly that required to complete the reaction.

• 11.96

2002-N-3

• 1s2 2s2 2p6 3s2 3p6 4s2 3d2

IV

6

octahedral

1s2 2s2 2p6 3s2 3p6

No. Transition metal ions are coloured because they have 3d electrons. The Ti in [TiCl$_6$]$^{2-}$ has lost all of its 3d electrons.

• 11.96

2002-N-4

• 3.10

5.06

11.12
2002-N-5

- 2-methyl-2-butene
- 2-butanone

\[
\text{CH}_3\text{OH} + \text{CH}_3\text{COOH}
\]

\[
\begin{align*}
\text{A: } & \text{Cr}_2\text{O}_7^{2-} / \text{H}^+ \quad \text{D: } \text{HN(CH}_3)_2 \\
\text{B: } & \text{SOCl}_2 \quad \text{E: } \text{NaOH} \\
\text{C: } & \text{CH}_3\text{OH} \quad \text{F: } \text{CH}_3\text{Br}
\end{align*}
\]

2002-N-6

- 1-pentanol
- Carboxylic acid, phenol

\[
\begin{align*}
\text{H}_3\text{C} & \text{NH}_3 & \text{H}_3\text{C} & \text{NH}_3 \\
\text{COOH} & \text{CO}_2 & \text{COOH} & \text{CO}_2 \\
\end{align*}
\]

It undergoes an acid-base reaction with itself to give a species that has both a positive and negative charge. It therefore has many characteristics of an ionic compound. One of these is its high melting point.

\[
\begin{align*}
\text{H}_2\text{N} & \text{C} \text{COOH} + \text{H}_2\text{N} & \text{R} \text{COOH} & \rightarrow \text{H}_2\text{N} & \text{C} \text{CO} \text{NH} & \text{C} \text{COOH}
\end{align*}
\]

The NH\textsubscript{2} group of one amino acid can react with the COOH group of another amino acid to form an amide. This process can be repeated again and again to produce a biopolymer which contains many amino acids.

2002-N-7

- 1-pentanol
- Carboxylic acid, phenol

\[
\begin{align*}
\text{O} & \text{C} \text{CH}_3 & \text{COOH} + \text{CH}_3\text{COOH}
\end{align*}
\]
acetic acid, CH₃COOH