The University of Sydney

CHEMISTRY 1A - CHEM1101

FIRST SEMESTER EXAMINATION

CONFIDENTIAL

JUNE 2004

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY	SID	
NAME	NUMBER	
OTHER	TABLE	
NAMES	NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 22 pages of examinable material.
- Complete the written section of the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a •.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Page 24 is for rough working only.

OFFICIAL USE ONLY

Multiple choice section

\backslash		Marks
Pages	Max	Gained
2-11	34	

Short answer section

	Marks			
Page	Max	Gaine	d	Marker
12	8			
13	8			
14	6			
15	7			
16	4			
17	7			
18	5			
19	4			
20	4			
21	6			
22	4			
23	3			
Total	66			

• In the spaces provided, explain the meaning of the following terms. You may use an example or diagram where appropriate.	Marks 8
(a) Pauli exclusion principle	
	_
(b) nuclide	
(c) conductance band	-
(d) ionisation energy	
THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY	

Balance the following nuclear reactions by identifying the missing nuclear particle or nuclide.
 Marks 3

$${}^{55}_{26}\text{Fe} + {}^{0}_{-1}\text{e} \rightarrow$$

$${}^{2}_{1}\text{H} + {}^{1}_{1}\text{H} \rightarrow {}^{3}_{2}\text{He} +$$

$${}^{15}_{7}\text{N} + {}^{1}_{1}\text{p} \rightarrow {}^{15}_{8}\text{O} +$$

2

• Calculate the atomic mass of silicon from the isotope information provided.

Isotope	Mass of isotope (a.m.u.)	Relative abundance
²⁸ Si	27.97693	92.21%
²⁹ Si	28.97649	4.70%
³⁰ Si	29.97376	3.09%

Answer:

• Calculate the molar activity of ³H (in Curie), given its half-life of 12.26 years.

3

Answer:

June 2004

- Marks • Complete the table below showing the number of valence electrons, a Lewis structure 5 and the predicted shape of each of the following species. Number of Formula Lewis structure Name of molecular shape valence electrons H, O, 8 e.g. H₂O `H Bent (angular) $SOCl_2$ CCl_4 Which, if either, of SOCl₂ and CCl₄ will have a dipole moment? 2
- Using the following electronegativity data, decide which one or more of the oxides of C, Te, Zn and Mg would be classified as containing ionic bonds. Briefly explain your answer.

Element	Electronegativity	
0	3.5	
С	2.5	
Te	2.1	
Zn	1.4	
Mg	1.2	

•	The ground state electron configuration of first excited state is [Ne] $3s^0 3p^1$. The into a sodium street lamp arises when an electr ground state. Calculate the energy associa	f a sodium atom is [Ne] $3s^1$ and that of its ense yellow light (wavelength 590 nm) from ron drops from the first excited state to the ated with one photon of this yellow light.	Marks 4
		Answer:	
	The ionisation energy of ground state so in energy required to ionise the $3p$ electron canswer in kJ mol ⁻¹ .	ium is 8.34×10^{-19} J per atom. Calculate the of an excited sodium atom. Give your	
		Answer:	

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

Marks • Water solutions of NaOH (100 mL, 2.0 M) and HCl (100 mL, 2.0 M), both at 24.6 °C, 4 were mixed together in a coffee cup calorimeter. The temperature of the solution rose to 38.0 °C during the reaction process. Write a balanced chemical equation to describe the reaction in the calorimeter. Is the process an endothermic or exothermic reaction? Assuming a perfect calorimeter, determine the standard enthalpy change for the neutralisation reaction. Assume the density of water is 1.00 g mL^{-1} . The heat capacity of water is 4.18 J $K^{-1} g^{-1}$. 3 • Explain why aluminium metal cannot be produced by the electrolysis of aqueous solutions of aluminium salts. Explain why aluminium is produced by the electrolysis of a molten mixture of Al₂O₃ and Na₃AlF₆ rather than by the electrolysis of molten Al₂O₃ alone.

• RDX (C ₃ H ₆ N ₆ O ₆) is a p describe the complete c	oowerful explosive ombustion of RD	e. Write the balance X to give water, carb	d chemical equation to on dioxide and nitrogen.	Marks 5
How does the equation	for the explosive of	decomposition of RI	DX differ from the above	-
equation?				-
				-
What properties of RD2	X make it a good e	explosive?		-
				_
How much heat is liber	ated from the com	plete combustion of	100 g of RDX?	
	Compound	$\Delta H_{\rm f}^{\circ} ({\rm kJ}{\rm mol}^{-1})$		
	$H_2O(l)$	-286		
	$CO_2(g)$	-394		
	RDX(s)	+65		
		Answer:		-

Aluminium metal is a very effective agent for reducing oxides to their elements. For example, it is used as a component of the solid fuel in the space shuttle, and in the thermite reaction shown in lectures:

 $Fe_2O_3(s) + 2Al(s) \rightarrow Al_2O_3(s) + 2Fe(s)$

Write a balanced equation for the reduction of CuO(s) to the base metal by Al(s).

Given the following thermochemical data, evaluate the enthalpy change per gram of reactants for the CuO and Fe_2O_3 reactions above.

Compound	$\Delta H_{\rm f}^{\circ} (\rm kJ mol^{-1})$
Fe ₂ O ₃	-821
Al ₂ O ₃	-1668
CuO	-157

	CuO	-137	
Answer (CuO):		Answer (Fe ₂ O ₃):	
Which set of reacta provided per mass	unts would make the be of fuel (<i>i.e.</i> biggest "bo	tter rocket fuel on the b unce per ounce")?	pasis of most energy

CHEM1101	2004-J-10	June 2004	22/06(a)
• The standard dry cell (battery) $Zn(s) \mid Zn^{2+}(a)$	has the following short q) $\parallel MnO_2(s), Mn_2O_3(s)$	nand notation: graphite(s)	Marks 4
Which component of the batter	ry is the anode?		
Give the balanced half equatio	n that takes place at the	anode.	
Which component of the batte	ry is the cathode?		
Give the balanced half equatio	n that takes place at the	cathode.	

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

CHEM1101 20	04-J-11	June 2004	22/06(a)
• Explain the following features of the lead It has a relatively constant voltage.	l acid storage batter	y.	Marks 3
It needs no salt bridge.			
It can be recharged.			
• Consider the following cell reaction.			3
$Pb(s) + Sn^{2+}(aq)$	$Pb^{2+}(aq) + S$	Sn(s)	
Use the Nernst equation to calculate the r which the cell potential, $E = 0$. (See the potentials.)	atio of cation conce data sheet for a table	entrations at 298 K for e of standard reduction	
	Answer:		

Marks • A saturated solution of iodine in water contains 0.330 g I_2 per litre, but more than this 4 amount can dissolve in a potassium iodide solution because of the following equilibrium. $I^{-}(aq) + I_{2}(aq) \implies I_{3}^{-}(aq)$ A 0.100 M KI solution dissolves 12.5 g of I_2 per litre, most of which is converted to $I_3^{-}(aq)$. Assuming that the concentration of $I_2(aq)$ in all saturated solutions is the same, calculate the equilibrium constant for the above reaction. Answer: THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

•	Calcium oxide (lime) is a white crystalline solid with a melting point of 2572 °C. It is manufactured by heating limestone, coral, sea shells or chalk, which are mainly CaCO ₃ , to drive off carbon dioxide, according to the following reaction.	Marks 3
	$CaCO_3(s)$ \leftarrow $CaO(s) + CO_2(g)$ $K_p = 1.16$ atm at 800 °C	
	If 20.0 g of CaCO ₃ were sealed in a 10.0 L container and heated to 800 °C, what percentage of CaCO ₃ would remain unreacted at equilibrium?	
	Answer:	_
	If 30.0 g of CaCO ₃ were initially sealed in the container, how much more CaO would be produced?	
	Answer:	

CHEM1101 - CHEMISTRY 1A

DATA SHEET

Physical constants Avogadro constant, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$ Faraday constant, $F = 96485 \text{ C mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \text{ J s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \text{ m s}^{-1}$ Boltzmann constant, $k_B = 1.381 \times 10^{-23} \text{ J K}^{-1}$ Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ $= 0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors 1 atm = 760 mmHg = 101.3 kPa 0 °C = 273 K 1 L = 10^{-3} m³ 1 Å = 10^{-10} m 1 eV = 1.602×10^{-19} J 1 Ci = 3.70×10^{10} Bq 1 Hz = 1 s⁻¹

Decimal fractions				
Fraction	Prefix	Symbol		
10^{-3}	milli	m		
10^{-6}	micro	μ		
10^{-9}	nano	n		
10^{-12}	pico	р		

Decimal multiples

Multiple	Prefix	Symbol
10^{3}	kilo	k
10^{6}	mega	Μ
10^{9}	giga	G

CHEM1101 - CHEMISTRY 1A

Standard Reduction Potentials, E°			
Reaction	E° / V		
$Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$	+1.36		
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23		
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92		
$\operatorname{Ag}^{+}(\operatorname{aq}) + \operatorname{e}^{-} \rightarrow \operatorname{Ag}(\operatorname{s})$	+0.80		
$\mathrm{Fe}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})$	+0.77		
$\operatorname{Cu}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cu}(s)$	+0.34		
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15		
$2\mathrm{H}^{+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{g})$	0 (by definition)		
$\mathrm{Fe}^{3+}(\mathrm{aq}) + 3\mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s})$	-0.04		
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13		
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14		
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.24		
$\operatorname{Fe}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Fe}(s)$	-0.44		
$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Cr}(s)$	-0.74		
$\operatorname{Zn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Zn}(s)$	-0.76		
$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83		
$\operatorname{Cr}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cr}(s)$	-0.89		
$\mathrm{Al}^{3+}(\mathrm{aq}) + 3\mathrm{e}^{-} \rightarrow \mathrm{Al}(\mathrm{s})$	-1.68		
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2.36		
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71		

CHEM1101 - CHEMISTRY 1A

Useful formulas

Quantum Chemistry	Gas Laws
$E = hv = hc/\lambda$	PV = nRT
$\lambda = h/mu$	$(P+n^2a/V^2)(V-nb) = nRT$
$4.5k_{\rm B}T = hc/\lambda$	

 $k = Ae^{-Ea/RT}$ $t_{\frac{1}{2}} = \ln 2/k$ $\ln[A] = \ln[A]_{o} - kt$

Colligative properties

 $\pi = cRT$ p = kc $\Delta T_{f} = K_{f}m$ $\Delta T_{b} = K_{b}m$

Electrochemistry

 $\Delta G^{\circ} = -nFE^{\circ}$ Moles of $e^{-} = It/F$ $E = E^{\circ} - (RT/nF) \times 2.303 \log Q$ $E^{\circ} = (RT/nF) \times 2.303 \log K$ $E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at } 25 \text{ °C)}$

Polymers

$$R_{\rm g} = \sqrt{\frac{n l_0^2}{6}}$$

Mathematics

ln x = 2.303 log x If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Radioactivity

 $A = \lambda N$ ln(N₀/N_t) = λt ¹⁴C age = 8033 ln(A₀/A_t)

Acids and Bases

 $pK_w = pH + pOH = 14.00$ $pK_w = pK_a + pK_b = 14.00$ $pH = pK_a + \log\{[A^-] / [HA]\}$

Thermodynamics & Equilibrium

$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$$
$$\Delta G = \Delta G^{\circ} + RT \ln Q$$
$$\Delta G^{\circ} = -RT \ln K$$
$$K_{\rm p} = K_{\rm c} (RT)^{\Delta \rm n}$$

	14 15	16	17	18
1 Hydrogen H 1.008				2 нелим Не 4.003
3 4 5 BORON	6 7	8 OXYGEN	9 FLUORINE	10 NEON
Li Be B	C N	0	F	Ne
6.941 9.012 10.81	12.01 14.01	16.00	19.00	20.18
11 12 13 ALIMINIM	14 15 SULCON PHOSPHORU	16	17 CHLORINE	18 ARGON
Na Mg Al	Si P	S	Cl	Ar
22.99 24.31 26.98 2	28.09 30.97	32.07	35.45	39.95
19 20 21 22 23 24 25 26 27 28 29 30 31 Gallin Chronie Chronie Chronie Chronie Correct	32 33	34	35 BROMINE	36 KRYPTON
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga	Ge As	Se	Br	Kr
39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.93 58.69 63.55 65.39 69.72 7	72.59 74.92	78.96	79.90	83.80
37 38 39 40 41 42 43 44 45 46 47 48 49	50 51	52	53	54
RUBBIUM STRONTIUM YTTRIUM ZIRCONIUM NOBIUM MOLYBBENUM TECHNETIUM RUTHENNUM RHODIUM PALLADIUM SILVER CADMIUM INDIUM	Sn Sb	Tellurium	IODINE	XENON
85.47 87.62 88.91 91.22 92.91 95.94 [98.91] 101.07 102.91 106.4 107.87 112.40 114.82 1	118.69 121.75	127.60	126.90	131.30
55 56 57-71 72 73 74 75 76 77 78 79 80 81	82 83	84	85	86
CAESIUM BARIUM HAFNIUM TANTALUM TUNGSTEN RHENIUM OSMIUM IRIDIUM PLATINUM GOLD MERCURY THALLIUM CS B2 Hf T2 W Re OS Ir Pt A11 Hg T1	LEAD BISMUTH Ph Bi	POLONIUM	ASTATINE A f	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	207.2 208.98	3 [210.0]	[210.0]	[222.0]
87 88 89-103 104 105 106 107 108 109				
FRANCIUM RADIUM RUTHERFORDIUM DUBNIUM SEABORGIUM BOHRIUM HASSIUM MEITNERIUM Fr Ra Rf Db So Rb Hs Mt				
$\begin{bmatrix} 11 & 14 & 15 & 5g & 5g & 11 & 115 \\ [223.0] & [226.0] & [261] & [262] & [266] & [262] & [265] & [266] \end{bmatrix}$				
57 58 59 60 61 62 63 64 65 66 67	68	69	70	71
LANTHANIDES LANTHANUM CERIUM PRASEODYMUM NEODYMUM PROMETHIUM SAMARIUM EUROPIUM GADOLINIUM TERBIUM DYSPROSIUM HOLMI LANTHANIDES LANTHANUM CERIUM PRASEODYMUM NEODYMUM PROMETHIUM SAMARIUM EUROPIUM GADOLINIUM TERBIUM DYSPROSIUM HOLMI	MIUM ERBIUM	THULIUM	YTTERBIUM Vh	LUTETIUM
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.93 167.26	168.93	173.04	174.97
89 90 91 92 93 94 95 96 97 98 99	9 100	101	102	103
ACTINIDES ACTINUM THORIUM PROTACTINUM URANUM NEPTUNUM PLUTONUM AMERICIUM CURIUM BERKELLIUM CALIFORNIUM EINSTEIN	EINIUM FERMIUM	MENDELEVIUM	NOBELIUM	
AC I'N PA U NP PU AM CM BK CF Es	2 11 [257 1]	NID	NO	Lr

PERIODIC TABLE OF THE ELEMENTS

CHEM1101 – CHEMISTRY 1A

22/06(b)