99/21(a) The University of Sydney

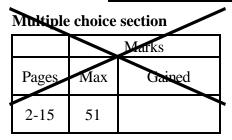
CHEM1405

FIRST SEMESTER EXAMINATION

FACULTY: VETERINARY SCIENCE

CONFIDENTIAL

JUNE 2002 <u>TIME ALLOWED: THREE HOURS</u>


GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY	SID	
NAME	NUMBER	
OTHER	TABLE	
NAMES	NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are
 17 pages of examinable material.
- Complete the examination paper in **INK**.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a •.
- Electronic calculators, including
 programmable calculators, may be used.
 Students are warned, however, that credit
 may not be given, even for a correct answer,
 where there is insufficient evidence of the
 working required to obtain the solution.
 Logarithms may also be used.
- Numerical values required for any question as well as a Periodic Table are printed on a separate data sheet.
- Pages 3, 7, 10, 19, 21 & 24 are for rough work only.

OFFICIAL USE ONLY

Short answer section

		Marks		
Page	Max	Gained		Marker
16	10			
17	6			
18	8			
20	7			
22	10			
23	8			
Total	49			
Check	Total			

•	Write a balanced	equation for	the dissolution	of $Bi_2(SO_4)_3$	in water.
---	------------------	--------------	-----------------	-------------------	-----------

Mark \mathbf{S} 1

• Complete the following table.

2

Formula	Systematic Name
CuCl₂·6H₂O	
	ammonium bromide
KMnO ₄	
	titanium(IV) oxide

3

• Iron is obtained from iron ore by reduction with carbon monoxide. The overall reaction is $Fe_2O_3(s) + 3CO(g) \rightarrow 2Fe(s) + 3CO_2(g)$. Calculate the standard enthalpy change for this reaction at 298 K.

Data:

$$\Delta H_{\rm f}^{\circ}_{298} \, \text{Fe}_2 \text{O}_3(\text{s}) = -825.5 \, \text{kJ mol}^{-1}$$

$$\Delta H_{\rm f}^{\circ}_{298} \, {\rm CO}({\rm g}) = -110.5 \, {\rm kJ \ mol^{-1}}$$

$$\Delta H_{\rm f}^{\circ}_{298} \, \text{CO}_2(g) = -393.5 \text{ kJ mol}^{-1}$$

2

$$\Delta H^{\circ}_{298} =$$

• Illustrate by means of a diagram what is meant by the term "micelle".

2

• Draw the Lewis structure for antimony trichloride, SbCl₃.

Mark

6

• The hydrolysis of sucrose can be represented by the following overall reaction.

$$\begin{array}{cccc} C_{12}H_{22}O_{11}(aq) \ + \ H_2O(l) & \rightarrow & C_6H_{12}O_6(aq) \ + \ C_6H_{12}O_6(aq) \\ \text{(sucrose)} & \text{(glucose)} & \text{(fructose)} \end{array}$$

A nutritional biochemist studied the kinetics of the process and obtained the following data.

sucrose (M)	time (hours)
0.501	0
0.451	0.50
0.404	1.00
0.363	1.50
0.267	3.00

The reaction is first order with respect to sucrose.

Use the above data to determine the rate constant and the half-life of the reaction.

k =	$t_{1/2} =$

How long does it take to hydrolyse 75% of the sucrose?

Answer:

Other studies have shown that this reaction is actually second order, but appears to follow first order kinetics. (Such a reaction is termed a pseudo first order reaction.) Suggest a reason for this apparent first order behaviour.

	e solubility product constant, K_{so} , of calcium te ion is $C_2O_4^{2-}$.					
	Answer:					
Phenylacetic acid ($C_6H_5CH_2COOH$) builds up in the blood of persons with phenyl-ketonuria, an inherited disorder that, if untreated, causes mental retardation or death. A study of the acid shows that a 0.12 M solution of phenylacetic acid has a pH of 2.6. What is the K_a of phenylacetic acid?						
	Answer:					
Write equations to show what happens to a by C ₆ H ₅ CH ₂ COOK who (a) H ₃ O ⁺ is added, (b) OH ⁻ is added.	buffer solution containing equimolar amounts of	_				
C ₆ H ₅ CH ₂ COOH and C ₆ H ₅ CH ₂ COOK who	buffer solution containing equimolar amounts of					
C ₆ H ₅ CH ₂ COOH and C ₆ H ₅ CH ₂ COOK who (a) H ₃ O ⁺ is added, (b) OH ⁻ is added.	buffer solution containing equimolar amounts of					
C ₆ H ₅ CH ₂ COOH and C ₆ H ₅ CH ₂ COOK who (a) H ₃ O ⁺ is added, (b) OH ⁻ is added.	buffer solution containing equimolar amounts of					

• Complete the following table.

Mark s 7

STARTING MATERIAL	REAGENT/CONDITIONS	CONSTITUTIONAL FORMULA(S) OF MAJOR ORGANIC PRODUCT(S)
O C NH ₂		O C NH ₂
>—s—s—<	NADH	
	excess Br ₂ CCl ₄ solvent	
Cl		OCH ₃
ОН	dilute NaOH	
О		ОН
0		OCH ₃ OH

Mark

3

• Consider the molecule **P**.

<u>/</u>	H
⟨	-CH ₂ CH ₂ NHCH ₃
	CH ₂ Br

P

List the four groups at the stereogenic carbon centre in order of priority (highest to lowest).

Highest priority	Lowest priority			

Draw the (R)-enantiomer.

• Give the constitutional formula of (*E*)-4-bromo-2-pentene.

11/2

• Name the following compound.

 $1\frac{1}{2}$

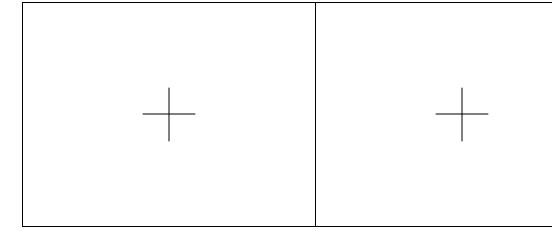
Name:

• The structure of the nucleic base guanine is shown below. Give the structures of two tautomers of guanine.

4

• The constitutional formula of the tetrapeptide Cys-Ser-Phe-Ala is shown below as the zwitterion.

Mark s


8

$$H_3N \longrightarrow O \longrightarrow OH \longrightarrow O \longrightarrow O \longrightarrow OH$$

Give the product(s) obtained, in their correct ionic states, when Cys-Ser-Phe-Ala is heated in 5 M NaOH (ie., hydrolysis conditions).

Give the constitutional formula of the major product(s) present when cold dilute acid is added to a solution of Cys-Ser-Phe-Ala to give a pH of 0.5.

The p K_a values of the amino acid cysteine are 1.7 (α -COOH), 10.8 (α -NH₃⁺) and 8.3 (sidechain). Give the Fischer projections of the two major forms of cysteine present at pH 8.3.

99/21(b) The University of Sydney

CHEM1405 - Chemistry 1 (Veterinary Science)

FIRST SEMESTER EXAMINATION

JUNE 2002

Numerical Data

Physical constants

Planck constant = $h = 6.626 \times 10^{-34} \text{ J s}$

Speed of light in vacuum = $c = 2.998 \times 10^8 \text{ m s}^{-1}$

Avogadro constant = $N_A = 6.022 \times 10^{23} \text{ mo}^{-1}$

Ideal gas constant = $R = 8.314 \text{ J K}^{-1} \text{ moL}^{-1}$

 $= 0.08206 L atm K^{-1} mol^{-1}$

Conversion factors

 $1 \text{ nm} = 10^{-9} \text{ m}$

 $1 L = 10^{-3} \text{ m}^3$

 $1 \text{ kJ} = 10^3 \text{ J}$

 $1 \text{ mL} = 10^{-3} \text{ L}$

 $1 \text{ mg} = 10^{-3} \text{ g}$

 $1 \text{ Hz} = 1 \text{ s}^{-1}$

1 atm = 101.3 kPa

Useful equations

 $\pi = iMRT$

 $pH = -log[H^+]$

 $pOH = -log[OH^-]$

pH + pOH = 14

Henderson-Hasselbalch equation:

 $pH = pK_a + log([conj base]/[acid])$

For first order integrated rate law:

 $\ln[A]_0 - \ln[A]_t = kt$

 $t_{\frac{1}{2}} = \ln 2 / k$

A periodic table is printed on the other side of this data sheet. Atomic weights are included in the periodic table.

.../2

PERIODIC TABLE OF THE ELEMENTS

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 H 1.008																	2 Не 4.003
З	4 BERYLLIUM											5 BORON	6 CARBON	7 nitrogen	8 oxygen	9 FLUORINE	10 NEON
Li	Be											В	C	N	O	\mathbf{F}	Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11 sodium	12 magnesium											13	14 SILICON	15 PHOSPHORUS	16 SULFUR	17	18 argon
Na	Mg											Al	Si	P	S	Cl	Ar
22.99	24.31											26.98	28.09	30.97	32.07	35.45	39.95
19 POTASSIUM	20	21 scandium	22 TITANIUM	23 VANADIUM	24 CHROMIUM	25 manganese	26 IRON	27	28 NICKEL	29 COPPER	30 zinc	31 gallium	32 germanium	33 ARSENIC	34 SELENIUM	35 BROMINE	36 KRYPTON
K	Ca	Sc	Ti	${f V}$	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
RUBIDIUM Rb	STRONTIUM	YTTRIUM	ZIRCONIUM Zr	Nb	MOLYBDENUM Mo	Tc Tc	Ruthenium Ru	RHODIUM Rh	PALLADIUM	Ag	Cadmium	In	Sn	Sb	Te	IODINE	Xenon Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98.91]	101.07	102.91	106.4	107.87	112.40	114.82	118.69	121.75	127.60	126.90	131.30
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
CAESIUM	Barium Ba		HAFNIUM Hf	Tantalum Ta	TUNGSTEN	RHENIUM Re	OSMIUM OS	Iridium	PLATINUM Pt	Au	Hg	THALLIUM T1	Pb	Bismuth Bi	POLONIUM PO	ASTATINE At	RADON Rn
132.91	137.34		178.49	180.95	183.85	186.2	190.2	192.22	195.09	196.97	200.59	204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
87		89-103		105	106	107	108	109							1		
FRANCIUM	RADIUM		RUTHERFORDIUM	DUBNIUM	SEABORGIUM	BOHRIUM	HASSIUM	MEITNERIUM									
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt									
[223.0]	[226.0]		[261]	[262]	[266]	[262]	[265]	[266]									

LANTHANIDE S

,	57	58 CERIUM	59 PRASEODYMIUM	60 NEODYMIUM	61	62 Samarium	63 EUROPIUM	64 gadolinium	65 TERBIUM	66 Dysprosium	67 HOLMIUM	68 erbium	69 THULIUM	70 YTTERBIUM	71
,	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	138.91	140.12	140.91	144.24	[144.9]	150.4	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97

ACTINIDES

89 actinium	90 THORIUM	91 PROTACTINIUM	92 uranium	93 NEPTUNIUM	94 PLUTONIUM	95 americium	96 curium	97 BERKELLIUM	98 californium	99 EINSTEINIUM	100 FERMIUM	101 mendelevium	102 NOBELIUM	103 LAWRENCIUM
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
[227.0]	232.04	[231.0]	238.03	[237.0]	[239.1]	[243.1]	[247.1]	[247.1]	[252.1]	[252.1]	[257.1]	[256.1]	[259.1]	[260.1]