99/21(a)

The University of Sydney

CHEM1405 - CHEMISTRY (VETERINARY SCIENCE)

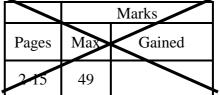
FIRST SEMESTER EXAMINATION

JUNE 2003

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

CONFIDENTIAL


FAMILY	SID	
NAME	NUMBER	
OTHER	TABLE	
NAMES	NUMBER	

INSTRUCTIONS TO CANDIDATES

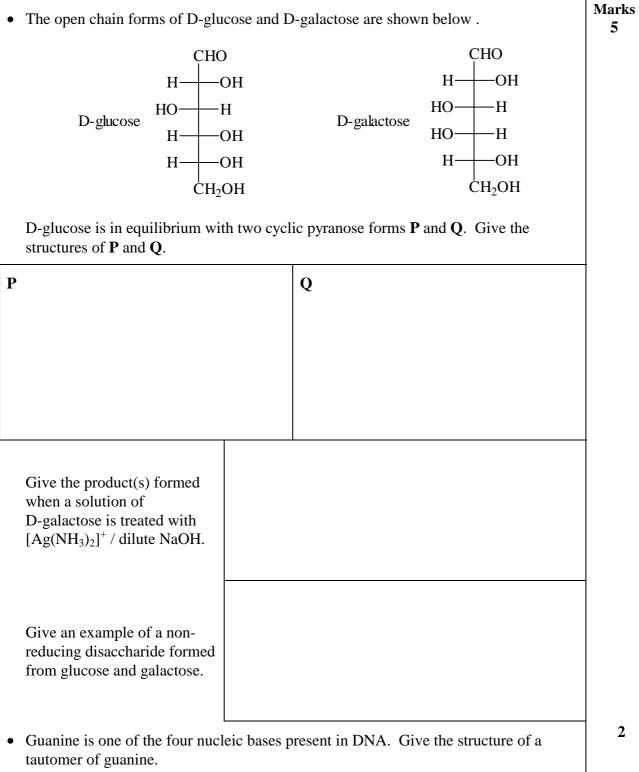
- All questions are to be attempted. There are 19 pages of examinable material.
- Complete the examination paper in **INK**.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a ●.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution. Logarithms may also be used.
- Numerical values required for any question as well as a Periodic Table are printed on a separate data sheet.
- Pages 10, 19, 21 & 24 are for rough work only.

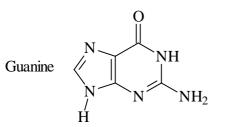
OFFICIAL USE ONLY

Multiple choice section

Short answer section

		Marks				
Page	Max	Gained		Marker		
16	10					
17	6					
18	8					
20	10					
22	10					
23	7					
Total	51					
Check	Total					


CHEM1405	2003-J-2	Jun	e 2003 9	9/21(a)
• Write a balanced equ	ation for the dissolut	ion of Ca(CH ₃ CO ₂) ₂ in wat	er.	Marks 1
 Complete the followi 	ing table.			2
Formula		Systematic Name		-
CoCl ₂ ·6H ₂ O				
	ammonium chl	oride		-
Li_2SO_4				-
	calcium hydrog	encarbonate		-
• What quantity of hea the following equation		5.2 g of propane (C_3H_8) is b	ournt according to	3
• •		$H_2O(1) \qquad \Delta H = -2221 \text{ kJ}$	mol^{-1}	
				1
		Answer:		-
				2
• Illustrate by means of	a diagram what is n	neant by the term "micelle"		-
 Draw the Lewis struc 	ture for sulfur dichle	ride SCl.		2
- Druw the Lewis struc				-


		of C_2H_4O as a function of time at 690 K for	Marks 4
the following react		$CH_4(g) + CO(g)$	
	$[C_2H_4O](M)$	time (mins)	
	0.0860	0	
	0.0465	50	
	0.0355	72	
	0.0274	93	
	0.0174	130	
The reaction is firs	t order with respect to	$C_2H_4O.$	
		constant and the half-life of the reaction.	
			-
<i>k</i> =		$t_{l/2} =$	-
			-
How long does it ta	ake for 75% of the $C_2 H$	H ₄ O to react?	-
		Answer:	
• Calculate the osmo at 37 °C	otic pressure of a 0.25	M aqueous solution of sucrose, $C_{12}H_{22}O_{11}$,	2
			+
		Anomore	-
		Answer:	

• Calcium oxalate is only slightly soluble in water (5.73 mg L ⁻¹ at 25 °C) and can deposited as "kidney stones". Calculate the solubility product constant, K_{so} , of calcium oxalate at 25 °C. The formula of the oxalate ion is $C_2O_4^{2-}$.	be Marks 3
Answer:	
• Ascorbic acid (Vitamin C) is a monoprotic acid of formula $C_6H_8O_6$. Calculate the of a 0.10 M solution of ascorbic acid, given the K_a of ascorbic acid is 8.0×10^{-5} .	
Anguyon	
 Answer: Write equations to show what happens to a buffer solution containing equimolar amounts of C₆H₅CH₂COOH and C₆H₅CH₂COOK when: (a) H₃O⁺ is added, (b) OH⁻ is added. 	2
(b)	

)/=1(u)
• Complete the following t	able.		Marks 10
STARTING MATERIAL	REAGENT/CONDITIONS	CONSTITUTIONAL FORMULA(S) OF MAJOR ORGANIC PRODUCT(S)	
	excess Br ₂ CCl ₄ solvent		
Name:			
O Name:	1. LiAlH ₄ 2. dilute HCl		-
OH Name:	dilute NaOH		-
O NH ₂	6 M NaOH heat		-
НО	Na ₂ Cr ₂ O ₇ in dilute sulfuric acid		
Name:	excess CH ₃ CH ₂ OH conc. H ₂ SO ₄ catalyst heat		

• The amino acid cysteine (Cys, sidechain R= -CH ₂ SH) is one of the twenty common amino acids found in proteins.									
Draw a Fischer projec		Com							
L-cysteine as the zwit	terion.	(S)-cys	-						
Give the constitutional for is treated with each of the			when a solution of L-cysteine						
Cold dilute HCl solution	Cold dilute Na	aOH solution	A solution of iodine						
				_					
The pK_a values of cysteine a major species present in a w									
pH 8.2		рН 13.0		-					
Give the constitutional form	ula of the dipe	ptide Cys-Cys.							

The University of Sydney

CHEM1405 - CHEMISTRY (VETERINARY SCIENCE)

FIRST SEMESTER EXAMINATION

JUNE 2003

Numerical Data

Physical constants

Planck constant = $h = 6.626 \times 10^{-34}$ J s Speed of light in vacuum = $c_0 = 2.998 \times 10^8$ m s⁻¹ Avogadro constant = $N_A = 6.022 \times 10^{23}$ mol⁻¹ Faraday constant = F = 96485 C mol⁻¹ Ideal gas constant = R = 8.314 J K⁻¹ mol⁻¹ = 0.08206 L atm K⁻¹ mol⁻¹ Volume of 1 mol of ideal gas at 1 atm, 0 °C = 22.4 L Volume of 1 mol of ideal gas at 1 atm, 25 °C = 24.5 L

Conversion factors

0 °C = 273 K 1 atm = 101.3 kPa = 760.0 mmHg 1 nm = 10^{-9} m 1 MHz = 10^{6} Hz = 10^{6} s⁻¹ 1 L = 10^{-3} m³

Useful equations

 $\pi = i \mathbf{M} R T$

pH = $-\log[H^+]$ pOH = $-\log[OH^-]$ pH + pOH = 14.00 Henderson-Hasselbalch equation: pH = pK_a + log([conj base]/[conj acid]) For first order integrated rate law: $ln[A]_0 - ln[A]_t = kt$ $t_{1/2} = ln2 / k$

A periodic table is printed on the other side of this data sheet. Atomic weights are included in the periodic table.

2002	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
June	1 нуdrogen Н 1.008																	2 нелим Не 4.003
	3 LITHIUM	4 beryllium											5 boron	6 carbon	7 NITROGEN	8 oxygen	9 FLUORINE	10 NEON
	Li	Be											B	C	N	0	F	Ne
	6.941 11	9.012 12	-										10.81 13	12.01 14	14.01 15	16.00 16	19.00 17	20.18 18
	SODIUM	MAGNESIUM											ALUMINIUM	SILICON	PHOSPHORUS	SULFUR	CHLORINE	ARGON
	Na 22.99	Mg 24.31											Al 26.98	Si 28.09	P 30.97	S 32.07	Cl 35.45	Ar 39.95
	19	24.51	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	POTASSIUM K	CALCIUM Ca	scandium Sc	titanium Ti	VANADIUM V	CHROMIUM Cr	MANGANESE Mn	IRON Fe	cobalt Co	NICKEL Ni	copper Cu	zinc Zn	GALLIUM Ga	GERMANIUM Ge	ARSENIC AS	selenium Se	BROMINE Br	KRYPTON Kr
	X 39.10	Ca 40.08	44.96	47.88	v 50.94	52.00	1V111 54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.59	AS 74.92	78.96	DI 79.90	K 83.80
ດ	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
1	RUBIDIUM Rb	strontium Sr	YTTRIUM Y	zirconium Zr	NIOBIUM Nb	MOLYBDENUM MO	TECHNETIUM TC	RUTHENIUM Ru	RHODIUM Rh	PALLADIUM Pd	silver Ag	CADMIUM CADMIUM	INDIUM	Sn	ANTIMONY Sb	TELLURIUM Te	IODINE	xenon Xe
	85.47	87.62	88.91	91.22	92.91	95.94	[98.91]	101.07	102.91	106.4	107.87	112.40	114.82	118.69	121.75	127.60	126.90	131.30
UHEMI402	55 caesium	56 barium	57-71	72 hafnium	73 tantalum	74 TUNGSTEN	75 RHENIUM	76 _{озміим}	77 iridium	78 platinum	79 GOLD	80 mercury	81 THALLIUM	82 LEAD	83 bismuth	84 polonium	85 astatine	86 radon
	Cs	Ba		HAFNICM	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Polonem	Asiante	Rn
	132.91	137.34		178.49	180.95	183.85	186.2	190.2	192.22	195.09	196.97	200.59	204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
	87 FRANCIUM	88 radium	89-103	104 RUTHERFORDIU	105 dubnium	106 seaborgium	107 bohrium	108 hassium	109 meitnerium									
	Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt									
	[223.0]	[226.0]		[261]	[262]	[266]	[262]	[265]	[266]									
		57	7 5	8	59	60	61	62	63	64	65	5 0	56	67	68	69	70	71
	LANTHANID	ES LANTHA	NUM CER	RIUM PR	ASEODYMIUM	NEODYMIUM	PROMETHIUM	SAMARIUM	EUROPIUM	GADOLINIUN	4 TERBI	UM DYSI	PROSIUM	OLMIUM	ERBIUM	THULIUM	YTTERBIUM	LUTETIUM
		La 138.		Ce 0.12	Pr 140.91	Nd 144.24	Pm [144.9]	Sm 150.4	Eu 151.96	Gd 157.25	T 158.		•	Ho 64.93	Er 167.26	Tm 168.93	Yb 173.04	Lu 174.97
6		89		0	91	92	93	94	95	96	97		98	99	100	101	102	103
71(1	ACTINIDES	S ACTIN		пішм рі `h	DIACTINIUM Pa	URANIUM U	NEPTUNIUM Np	PLUTONIUM Pu	AMERICIUM Am	CURIUM CURIUM	BERKELI BL			Es	FERMIUM Fm	MENDELEVIUM MC	NOBELIUM NO	lawrencium Lr
,//66		[227			231.0]	238.03	[237.0]	[239.1]	[243.1]	[247.1]				LS 252.1]	[257.1]	[256.1]	[259.1]	[260.1]

PERIODIC TABLE OF THE ELEMENTS

June 2003

CHEM1405

99/21(b)