99/21(a)

The University of Sydney

CHEM1405 - CHEMISTRY (VETERINARY SCIENCE)

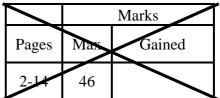
FIRST SEMESTER EXAMINATION

JUNE 2004

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

CONFIDENTIAL


FAMILY	SID	
NAME	NUMBER	
OTHER	TABLE	
NAMES	NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 19 pages of examinable material.
- Complete the examination paper in **INK**.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a ●.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution. Logarithms may also be used.
- Numerical values required for any question as well as a Periodic Table are printed on a separate data sheet.
- Pages 5, 17, 20 & 24 are for rough work only.

OFFICIAL USE ONLY

Multiple choice section

Short answer section

		Marks						
Page	Max	Gained		Gained		Max Gained		Marker
15	9							
16	6							
18	9							
19	10							
21	7							
22	3							
23	10							
Total	54							
Check	Check Total							

• Write a balanced equation for the dissolution of Ca ₅ (PO ₄) ₃ OH, hydroxy mineral component of teeth, in water.	vapatite, the Marks 1
• Briefly explain why transition metal ions are often found in biological e systems.	enzyme 2
• How much heat is evolved when 907 g of ammonia is produced ac	$\frac{2}{2}$
following equation? (Assume the reaction occurs at constant pressure.)	
$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g) \qquad \Delta H = -91.8 \text{ kJ mol}^{-1}$	
Answer:	
• Illustrate by means of a diagram what is meant by the term "micelle".	2
	2
• Draw the Lewis structure for nitrogen trichloride, NCl ₃ .	

Marks • Calculate the initial cell potential for the following *unbalanced* reaction at 25 °C 4 from the standard electrode potentials. Assume the concentration of all species is initially 1 M. $\operatorname{Fe}^{3+}(\operatorname{aq}) + \operatorname{Sn}^{2+}(\operatorname{aq}) \rightarrow \operatorname{Fe}^{2+}(\operatorname{aq}) + \operatorname{Sn}^{4+}(\operatorname{aq})$ Answer: Calculate the equilibrium constant, K, for the reaction at 25 °C. Answer: 2 Calculate the osmotic pressure of a 0.25 M aqueous solution of sucrose, $C_{12}H_{22}O_{11}$, • at 37 °C. Answer:

CHEM1405	2004-J-4	June 2004	99/21(a)
	² O ₄ , is slightly soluble in water ty product constant, <i>K</i> _{so} , of iron		Marks 3
	Answer:		
	a solution that is 0.010 M in be Na. The K_a of benzoic acid is (4
	Answer:		
Would this solution n	nake a good buffer system? Gi	ve reasons for your answer?	
			2
-	N_2O_4 are in equilibrium according) $\implies 2NO_2(g)$		
In which direction wi	Il the reaction move when the fused by decreasing the volume.		
The temperature is inc	creased.		

Marks (Z)-11-Tetradecenyl acetate, structure \mathbf{Q} below, is a pheromone secreted by corn • 10 borers. (CH₂)₁₀—O CH₃CH₂ ·CH₃ ∬ O Q List the functional groups present in **Q**. Which term best describes **Q**? Choose from *achiral*, *chiral* or *racemic mixture*. Give the structure of (i) a stereoisomer of **Q** and (ii) a constitutional isomer of **Q**. stereoisomer constitutional isomer Give the product(s) obtained when **Q** is treated with each of the following reagents. In each case indicate if the product(s) formed are chiral, achiral or a racemic mixture.

	Product	Stereochemical description
Br ₂ / CCl ₄		
H ₂ / Pd / C		

Give the product(s) formed when **Q** is heated in 2 M NaOH.

CHEMI 105	200130	Julie 2001))/21(u)
• Complete the following	table.		Marks 7
STARTING MATERIAL	REAGENT/CONDITIONS	CONSTITUTIONAL FORMULA(S) OF MAJOR ORGANIC PRODUCT(S)	
OH	hot conc. H ₂ SO ₄		
S—H		>s<	
O H	$[Ag(NH_3)_2]^\oplus$ / dilute NaOH		
OCH ₃	excess CH ₃ CH ₂ NH ₂		
	dilute NaOH	$ \overset{\oplus}{\overset{\otimes}{\operatorname{Na}}} \overset{O}{\overset{O}{\operatorname{-C}}} \overset{O}{} \overset{O}{\overset{\otimes}{\operatorname{Na}}} \overset{O}{\overset{\otimes}{\operatorname{Na}}} \overset{O}{\overset{\otimes}{\operatorname{Na}}} \overset{O}{\overset{\otimes}{\operatorname{Na}}} \overset{O}{\overset{\otimes}{\operatorname{Na}}} \overset{O}{\overset{O}{\operatorname{Na}}} \overset{O}{\overset{\otimes}{\operatorname{Na}}} \overset{O}{\overset{O}{\operatorname{Na}}} \overset{O}{\overset{O}}{\overset{O}{\operatorname{Na}}} \overset{O}{\overset{O}}{\overset{O}} \overset{O}{{\operatorname{Na}}} \overset{O}{\overset{O}} \overset{O}{{\operatorname{Na}}} \overset{O}{\overset{O}}{\overset{O}}{\overset{O}} \overset{O}{\overset{O}}{\overset{O}} \overset{O}{{\operatorname{Na}}} \overset{O}{\overset{O}}{\overset{O}}{\overset{O}} \overset{O}{\overset{O}}{\overset{O}} \overset{O}{{\overset{O}}{\operatorname{Na}}} \overset{O}{\overset{O}}{\overset{O}} \overset{O}{{\overset{O}}{\overset{O}}} \overset{O}{\overset{O}}{\overset{O}} \overset{O}{{\overset{O}}{\overset{O}}} \overset{O}{\overset{O}}{\overset{O}}{\overset{O}}{\overset{O}} \overset{O}{\overset{O}}{\overset{O}}{\overset{O}} \overset{O}{$	
0	2. dilute H^{\oplus}/H_2O		
HO HO OCH ₃	dilute H [⊕] /H ₂ O		

• Name the following co important.	ompounds. Be careful to include stereochemistry if this is	Marks 3
HO		
Br		

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

Marks The constitutional formula of a derivative of the naturally occurring tetrapeptide, • 10 Tyr-Lys-Ser-Asn is shown below. NH₂ (ĊH₂)₄ H NH₂ H CH₃ OH | H H ĊH₂ Ö Ö ĊH₂ Ö ÓН ÓН Give the Fischer projection of Complete the stereoformula of (*R*)-Lys. L-Ser as the zwitterion. Ή Give the constitutional formulas in the correct ionic states of the products obtained from the vigorous basic hydrolysis (5 M KOH) of the tetrapeptide. The pI of Tyr is 5.7. What does this mean?

CHEM1405 - CHEMISTRY (VETERINARY SCIENCE)

DATA SHEET

Physical constants Avogadro constant, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$ Faraday constant, $F = 96485 \text{ C mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \text{ J s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \text{ m s}^{-1}$ Boltzmann constant, $k_B = 1.381 \times 10^{-23} \text{ J K}^{-1}$ Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ $= 0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors 1 atm = 760 mmHg = 101.3 kPa 0 °C = 273 K 1 L = 10^{-3} m³ 1 Å = 10^{-10} m 1 eV = 1.602×10^{-19} J 1 Ci = 3.70×10^{10} Bq 1 Hz = 1 s⁻¹

D	ecimal fr	actions	De	Decimal multiples					
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol				
10^{-3}	milli	m	10^{3}	kilo	k				
10^{-6}	micro	μ	10 ⁶	mega	М				
10^{-9}	nano	n	10 ⁹	giga	G				
10^{-12}	pico	р							

CHEM1405 - CHEMISTRY (VETERINARY SCIENCE)

Standard Reduction Potenti	als, E°
Reaction	E° / V
$Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80
$\mathrm{Fe}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})$	+0.77
$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$	+0.34
$\mathrm{Sn}^{4+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{Sn}^{2+}(\mathrm{aq})$	+0.15
$2H^+(aq) + 2e^- \rightarrow H_2(g)$	0 (by definition)
$\operatorname{Fe}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Fe}(s)$	-0.04
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.24
$Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$	-0.44
$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Cr}(s)$	-0.74
$\operatorname{Zn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Zn}(s)$	-0.76
$2H_2O ~+~ 2e^- \rightarrow ~H_2(g) ~+~ 2OH^-(aq)$	-0.83
$Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$	-0.89
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.68
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2.36
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71

CHEM1405 - CHEMISTRY (VETERINARY SCIENCE)

Useful formulas

Quantum Chemistry	Gas Laws
$E = h u = h c / \lambda$	PV = nRT
$\lambda = h/mu$	$(P + n^2 a/V^2)(V - nb) = nRT$
$4.5k_{\rm B}T = hc/\lambda$	

KineticsRadioactivity $k = Ae^{-Ea/RT}$ $A = \lambda N$ $t_{1/2} = \ln 2/k$ $\ln(N_0/N_t) = \lambda t$ $\ln[A] = \ln[A]_o - kt$ $^{14}C age = 8033 \ln(A_0/A_t)$

Colligative properties $\pi = cRT$

p = kc $\Delta T_{f} = K_{f}m$ $\Delta T_{b} = K_{b}m$

Electrochemistry

$$\Delta G^{\circ} = -nFE^{\circ}$$
Moles of $e^{-} = It/F$

$$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$$

$$E^{\circ} = (RT/nF) \times 2.303 \log K$$

$$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$$

Polymers

$$R_{\rm g} = \sqrt{\frac{n l_0^2}{6}}$$

Mathematics

ln x = 2.303 log x If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Acids and Bases

 $pK_w = pH + pOH = 14.00$ $pK_w = pK_a + pK_b = 14.00$ $pH = pK_a + \log\{[A^-] / [HA]\}$

Thermodynamics & Equilibrium

$$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$$
$$\Delta G = \Delta G^{\circ} + RT \ln Q$$
$$\Delta G^{\circ} = -RT \ln K$$
$$K_{\rm p} = K_{\rm c} (RT)^{\Delta \rm n}$$

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 нудкоден Н 1.008																	2 нешим Не 4.003
3 LITHIUM	4 BERYLLIUM											5 BORON	6 CARBON	7 NITROGEN	8 oxygen	9 FLUORINE	10 NEON
Linnow	Bertliom											BORON	CARBON	NIROGEN	OXIGEN	F	Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11 sodium	12 magnesium											13 ALUMINIUM	14 SILICON	15 PHOSPHORUS	16 SULFUR	17 CHLORINE	18 ARGON
Na	Mg											Al	Si	P	S	Cl	Ar
22.99	24.31		1									26.98	28.09	30.97	32.07	35.45	39.95
19 potassium	20 CALCIUM	21 scandium	22 TITANIU		24 CHROMIUM	25 manganese	26 IRON	27 COBALT	28 NICKEL	29 COPPER	30 zinc	31 GALLIUM	32 germanium	33 ARSENIC	34 selenium	35 bromine	36 KRYPTON
K	Ca	Sc	Ti		Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.8		52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.59	74.92	78.96	79.90	83.80
37 RUBIDIUM	38 strontium	39 yttrium	40 zirconi		42 molybdenum	43 TECHNETIUM	44 ruthenium	45 RHODIUM	46 palladium	47 SILVER	48 cadmium	49 INDIUM	50 TIN	51 ANTIMONY	52 TELLURIUM	53 IODINE	54 xenon
Rb	Sr	Y	Zr		Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
85.47	87.62	88.91	91.2		95.94	[98.91]	101.07	102.91	106.4	107.87	112.40	114.82	118.69	121.75	127.60	126.90	131.30
55 caesium	56 barium	57-71	72 HAFNIU		74 TUNGSTEN	75 RHENIUM	76 озміим	77 IRIDIUM	78 platinum	79 GOLD	80 mercury	81 THALLIUM	82 LEAD	83 bismuth	84 polonium	85 ASTATINE	86 radon
Cs	Ba		Hf		W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Ро	At	Rn
132.91	137.34		178.4		183.85	186.2	190.2	192.22	195.09	196.97	200.59	204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
87 FRANCIUM	88 radium	89-103	104 RUTHERFOR		106 seaborgium	107 bohrium	108 hassium	109 meitnerium									
Fr	Ra		Rf		Sg	Bh	Hs	Mt									
[223.0]	[226.0]		[261	[262]	[266]	[262]	[265]	[266]									
	57	7 4	58	59	60	61	62	63	64	65		66	67	68	69	70	71
ANTHANIDI	ES LANTHA	NUM CE	RIUM	PRASEODYMIUM	NEODYMIUM	PROMETHIUM	SAMARIUM	EUROPIUM	GADOLINIUN	M TERBI	UM DYS	SPROSIUM	HOLMIUM	ERBIUM	THULIUM	YTTERBIUM	LUTETIU
	La 138.		C e 0.12	Pr 140.91	Nd 144.24	Pm [144.9]	Sm 150.4	Eu 151.96	Gd 157.25	Tl 158.		Dy 52.50	Ho 164.93	Er 167.26	Tm 168.93	Yb 173.04	Lu 174.9
	138.		0.12	<u>140.91</u> 91	<u>144.24</u> 92	<u>[144.9]</u> 93	<u>130.4</u> 94	95	96	97		98	<u>104.95</u> 99	107.20	108.95	173.04	1/4.9
ACTINIDES	ACTINI	UM THO	ORIUM	PROTACTINIUM	URANIUM	NEPTUNIUM	PLUTONIUM	AMERICIUM	CURIUM	BERKEL	LIUM CAL	IFORNIUM	EINSTEINIUM	FERMIUM	MENDELEVIUM	NOBELIUM	LAWRENCI
	A [227		Г h 2.04	Pa [231.0]	U 238.03	Np [237.0]	Pu [239.1]	Am [243.1]	Cm [247.1]	Bl [247		Cf 52.1]	Es [252.1]	Fm [257.1]	Md [256.1]	No [259.1]	Lr [260.1

PERIODIC TABLE OF THE ELEMENTS

June 2004

CHEM1405 - CHEMISTRY (VETERINARY SCIENCE)

99/21(b)