89/06(a) The University of Sydney

CHEM1611 - CHEMISTRY 1 (PHARMACY)

CONFIDENTIAL

FIRST SEMESTER EXAMINATION

JUNE 2002

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY	SID	
NAME	NUMBER	
OTHER	TABLE	
NAMES	NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 12 pages of examinable material.
- Complete the examination paper in INK.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a
 .
- Electronic calculators, including programmable calculators, may be used.
 Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- A Periodic Table and numerical values required for any question may be found on a separate data sheet.
- Pages 6, 11 and 16 are for rough working only.

OFFICIAL USE ONLY

Multiple choice section

	Marks	
Pages	Max	Gained
25	25	

Short answer section

		Marks		
Page	Max	Gaine	d	Marker
7	10			
8	10			
9	9			
10	9			
12	6			
13	10			
14	10			
15	11			
Total	75			
Check	Total			

Mark • Write a balanced **ionic equation** for the reaction that occurs in each of the following cases. If no reaction occurs, write "no reaction". Include only those species involved in the **10** reaction. Solutions of barium chloride and sodium sulfate are mixed. Copper(II) oxide is treated with hydrochloric acid (6 M). Solutions of mercury(I) nitrate and sodium chloride are mixed. Dilute nitric acid is added to solid magnesium carbonate and the solution is warmed. A large excess of sodium hydroxide solution (4 M) is added to a solution containing aluminium ions. Sodium metal is added to excess water. Magnesium metal is ignited in excess oxygen. Chlorine gas is bubbled through an iron(II) sulfate solution. Iron(II) sulfide is treated with excess sulfuric acid (5 M). Cobalt(II) nitrate solution is mixed with excess sodium phosphate solution.

Compound

Compound

Mark

• Classify each of the following as either "soluble" or "insoluble" in water at 298 K.

Solubility

at 298 K.	s 3
Solubility	

 $K_2Cr_2O_7$ K_2SO_4 SrC_2O_4 Ba(OH)₂ CaF_2 $MgCO_3$

7

Complete the following table.			
FORMULA	SYSTEMATIC NAME		
NH ₄ SCN			
	cobalt(II) nitrate-6-water		
HClO ₄			
	potassium nitrite		
Bi(NO ₃) ₃			
	potassium hydrogencarbonate		
As			
	tetraaquadibromocobalt(III) chloride		
[Ni(OH ₂) ₅ Cl]NO ₃			
	mercury(I) acetate		
cis-[Pt(NH ₃) ₂ Cl ₂]			
	potassium hexacyanoferrate(II)		
H ₃ PO ₄			
	aluminium oxide		

Mark

• A gas formed by the reaction of N_2F_4 and $S_2O_6F_2$ is found to contain nitrogen (9.3%), sulfur (21.2%) and fluorine (37.7%). The remainder is assumed to be oxygen. The same gas (0.214 g) at 1.05 atm pressure and 296 K is found to occupy 33.0 mL.	s 5
What is the empirical formula of the gas?	=
What is the molar mass of the gas?	-
The same model mass of the gas.	
What is the molecular formula of the gas?	
 Calculate the heat input required for the conversion of 18.0 g of water from ice at 273 K to steam at 373 K. Give your answer in joules. 	2
	-
	_
• Red and white blood cells have walls that are semi-permeable membranes. The concentration of solute particles in blood is approximately 0.6 M. Explain what will happen to the blood cells when placed in: (i) pure water, (ii) 1 M sodium chloride.	2
	-
	1

•	Oxygen-free blood plasma (25.0 mL) is place which is maintained at a constant pressure of of 37 °C. As a result of dissolution in the place by 0.60 mL.	f 101 kPa and a temperature		Mark s 3
	What is the concentration of O ₂ in the blood	plasma expressed as molarity?		
		Answer:	M	
	What is the concentration of O_2 in the blood	plasma expressed as mg mL^{-1} ?		-
				-
		Answer:	mg mL ⁻¹	
•	A solution was prepared by mixing hydroch (1.00 L, 0.20 M) and sodium hydroxide (10.			3
		pH =		
•	Ammonium chloride (100 mL, 0.20 M) is mi (0.010 mole). Calculate the final pH of the s	•		3
		pH =		

•	When lead(II) fluoride (PbF ₂) is shaken with water at 25 °C, its solubility is found to be
	0.64 g L^{-1} . Calculate the value of K_{sp} for this compound at this temperature.

Mark s 3

3

Answer:

• For the reaction at 298 K,

$$N_2(g) \ + \ 3H_2(g) \quad \Longrightarrow \quad 2NH_3(g)$$

calculate $K_{\rm p}$ and ΔS_{298} for the reaction as written.

Data at 298 K:

$$\Delta H_{\rm f}^{\circ}$$
 (NH₃) = -46 kJ mol⁻¹

$$\Delta G_{\rm f}^{\,\circ}$$
 (NH₃) = -16 kJ mol⁻¹

 $K_p =$

 $\Delta S_{298} =$

•	Thyroxine is a human hormone that controls metal dissolved in 15 g of benzene, and the freezing points of thyroxine. (K_f benzene is 5.12 °C kg mol ⁻¹)	1 0 0	Mark s 4
	Ans	wer:	
•	The molar heats of vaporisation of water and nitro Account for this large difference.	ogen are 41 and 5.6 kJ mol⁻¹ respectively.	2
•	Phenylacetic acid ($C_6H_5CH_2COOH$) builds up in ketonuria, an inherited disorder that, if untreated, study of the acid shows that a 0.12 M solution of is the K_a of phenylacetic acid?	causes mental retardation or death. A	4
	Ans	wer:	

•		current of 10.0 A is passed through a NaCl
		ANSWER:
•	Technetium-99 has a half-life of 6.02 hours, decay are used to monitor blood flow near t Tc-99, what mass of Tc-99 remains in the base of the second	the heart. If a patient is injected with 23 mg of
		ANSWER:
_	The managed voltage of the call	
•	The measured voltage of the cell $\label{eq:cusing} \text{Cu(s)} \big \text{Cu}^{2+}(\text{aq}) \big $	$\ Ag^{+}(ag) \ Ag(s)$
	is 0.35 V at 25 °C. Given $E^{\circ} = 0.46$ V and calculate the concentration of $Cu^{2+}(aq)$.	
		ANSWER:

• For each of the following elements, identify a biological function and indicate what feature(s) of the element make it suitable for this function.

Mark s	
S	
Ω	

Element	Biological function	Feature(s) of element
calcium		
potassium		
iron		
chlorine		

3

• Balance the following redox equation for acidic conditions.

$$Ag \quad + \quad Cr_2O_7{}^{2-} \quad \rightarrow \quad Cr^{3+} \quad + \quad Ag^+$$

OXIDATION

half reaction

REDUCTION

half reaction

OVERALL

reaction

The University of Sydney

CHEM1611 - CHEMISTRY 1 (PHARMACY)

Numerical Data

Physical constants

Avogadro constant = $N_A = 6.022 \times 10^{23} \text{ mo}^{-1}$

Faraday constant = $F = 96485 \text{ C mol}^{-1}$

Standard atmosphere = $1 \text{ atm} = 1.013 \times 10^5 \text{ Pa} = 760.0 \text{ mmHg}$

Ideal gas constant = $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$

 $= 0.08206 L atm K^{-1} mol^{-1}$

Density of liquid water at 298 K and 1.00 atm = 0.9970 g mL^{-1}

Conversion factors

$$0 \, ^{\circ}\text{C} = 273 \, \text{K}$$

$$1 \text{ cm} = 10^{-2} \text{ m}$$

$$1 \text{ kJ} = 10^3 \text{ J}$$

$$1 \text{ nm} = 10^{-9} \text{ m}$$

$$1 \text{ kPa} = 10^3 \text{ Pa}$$

$$1 \text{ mL} = 10^{-3} \text{ L}$$

$$1 L = 10^{-3} m^3$$

$$1 \text{ atm} = 101.3 \text{ kPa}$$

Thermodynamic data

$$C_p \text{ H}_2\text{O}(1) = 75 \text{ J K}^{-1} \text{ mol}^{-1}$$

$$\Delta H_{\text{vap}} \text{ H}_2\text{O}(1) = 41 \text{ kJ mol}^{-1}$$

$$\Delta H_{\text{fus}} \text{ H}_2\text{O(s)} = 6.0 \text{ kJ mol}^{-1}$$

Acid ionisation constant

$$pK_a NH_4^+ = 9.24$$

Standard electrode reduction potentials

$$Zn^{2+} + 2e^{-} \rightarrow Zn$$
 $E^{\circ} = -0.76 \text{ V}$

$$E^{\circ} = -0.76 \text{ V}$$

$$Cu^{2+} + 2e^{-} \rightarrow Cu^{2+}$$
 $E^{\circ} = 0.34 \text{ V}$

$$E^{\circ} = 0.34 \text{ V}$$

A periodic table is printed on the other side of this data sheet. Atomic weights are included in the periodic table.

PERIODIC TABLE OF THE ELEMENTS

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 H H 1.008																	2 He 4.003
З	4 BERYLLIUM											5 BORON	6 CARBON	7 nitrogen	8 oxygen	9 FLUORINE	10 NEON
Li	Be											В	C	N	O	F	Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11 sodium	12 magnesium											13	14 SILICON	15 PHOSPHORUS	16 SULFUR	17	18 argon
Na	Mg											Al	Si	P	S	Cl	Ar
22.99	24.31											26.98	28.09	30.97	32.07	35.45	39.95
19 POTASSIUM	20	21 scandium	22 TITANIUM	23 Vanadium	24 CHROMIUM	25 manganese	26 IRON	27	28 NICKEL	29 COPPER	30	31	32 GERMANIUM	33 ARSENIC	34 SELENIUM	35 BROMINE	36 KRYPTON
K	Ca	Scandium	Ti	VANABIUM	Cr	Mn	Fe	Co	Ni	Cu	Znc Zn	Gallon	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.59	74.92	78.96	79.90	83.80
37	38 STRONTIUM	39 YTTRIUM	40 zirconium	41 NIOBIUM	42	43	44 RUTHENIUM	45 RHODIUM	46 PALLADIUM	47 SILVER	48	49	50	51	52 TELLURIUM	53	54 XENON
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98.91]	101.07	102.91	106.4	107.87	112.40	114.82	118.69	121.75	127.60	126.90	131.30
55 CAESIUM	56 BARIUM	57-71	72	73	74 TUNGSTEN	75 RHENIUM	76 OSMIUM	77	78 PLATINUM	79	80 mercury	81 THALLIUM	82 LEAD	83 BISMUTH	84 POLONIUM	85 astatine	86 radon
Cs	Ba		Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91	137.34		178.49	180.95	183.85	186.2	190.2	192.22	195.09	196.97	200.59	204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
87 FRANCIUM	88 RADIUM	89-103	104	105 Dubnium	106 SEABORGIUM	107	108 hassium	109 MEITNERIUM									
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt									
[223.0]	[226.0]		[261]	[262]	[266]	[262]	[265]	[266]									

LANTHANIDE S	57 Lanthanum La 138.91	58 CERIUM Ce 140.12	59 PRASEODYMIUM Pr 140.91	60 NEODYMIUM Nd 144.24	61 PROMETHIUM Pm [144.9]	62 SAMARIUM Sm 150.4	63 Europium Eu 151.96	64 GADOLINIUM Gd 157.25	65 TERBIUM Tb 158.93	66 DYSPROSIUM Dy 162.50	67 ноімічм Но 164.93	68 Er 167.26	69 THULIUM Tm 168.93	70 YTTERBIUM Yb 173.04	71 Lu Lu 174.97
ACTINIDES	89 Actinium Ac [227.0]	90 THORIUM Th 232.04	91 PROTACTINIUM Pa [231.0]	92 uranium U 238,03	93 Neptunium Np	94 Pu Pu [239.1]	95 AMERICIUM Am [243.1]	96 curium Cm [247.1]	97 Berkellium Bk	98 CALIFORNIUM Cf [252.1]	99 EINSTEINIUM ES [252.1]	100 FERMIUM Fm	101 Md Md [256.1]	102 No No	103 LAWRENCIUM Lr [260.1]