89/06(a)

The University of Sydney <u>CHEM1611 - CHEMISTRY 1 (PHARMACY)</u>

FIRST SEMESTER EXAMINATION

JUNE 2003

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

CONFIDENTIAL

FAMILY	SID NUMBER	
OTHER	TABLE	
NAMES	NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 16 pages of examinable material.
- Complete the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a •.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- A Periodic Table and numerical values required for any question may be found on a separate data sheet.
- Pages 10, 16 and 20 are for rough working only.

OFFICIAL USE ONLY

Multiple choice section

Short answer section

		Marks					
Page	Max	Gaine	d	Marker			
11	10						
12	10						
13	7						
14	7						
15	8						
17	7						
18	9						
19	9						
Total	67						
Check	Total						

• Write a balanced <u>ionic equation</u> for the reaction that occurs in each of the following cases. If no reaction occurs, write "no reaction". <i>Include only those species involved in the reaction</i> .	Marks 10
Excess hydrochloric acid (1 M) is added to solid sodium hydrogencarbonate.	
Lithium metal is ignited in excess oxygen.	*
Solutions of mercury(I) nitrate and sodium chloride are mixed.	
Potassium dichromate solution is added to an acidified solution of iron(II) sulfate.	
Lead(II) nitrate solution is mixed with excess potassium chromate solution.	
Sodium metal is added to water.	
Excess hydrochloric acid is added to a solution of sodium tetrahydroxoaluminate.	•
A solution of calcium chloride is added to a solution of sodium phosphate.	
Excess ammonia (4 M) is added to a solution of copper(II) nitrate.	
Silver sulfide is treated with excess nitric acid (5 M).	

CHEM1611

2003-J-3

Marks • Classify each of the following as either "soluble" or "insoluble" in water at 298 K. Compound Compound Solubility Solubility $CoCl_2 \cdot 6H_2O$ HgCl₂ $Zn(CH_3CO_2)_2$ Li_2CO_3 MnO_2 $SrSO_4$ 7 Complete the following table. • FORMULA SYSTEMATIC NAME $NH_4Fe(SO_4)_2 \cdot 6H_2O$ [Cr(OH₂)₅Cl]SO₄ NaH₂PO₄ HClO₄ As_2O_3 $[Pd(NH_3)_2Cl_2]$ SO_2 potassium thiocyanate sodium nitrite tetraaquadibromocobalt(III) chloride sodium hexacyanoferrate(III) lead(IV) oxide peroxide ion nickel(II) nitrate-6-water

3

• A doctor recommends to a pregnant woman that she takes an iron supplement of 50 mg (as Fe ²⁺) daily. To achieve this, what mass (to the nearest mg) of iron(II) gluconate-2-water, FeC ₁₂ H ₂₂ O ₁₄ ·2H ₂ O, would be required?					
• What is the mass of each of the following at 298 K and 101 kPa pressure?	4				
(1) argon (24.5 http)					
(ii) water (24.5 litre)					
(iii) chlorine (12.25 litre)					
(iv) zinc (1.00 mole)					

 The time required for an unknown gas to flow through a needle of a syringe under reduced pressure is observed to be 14.4 seconds. The corresponding time for the same volume of carbon dioxide to flow through the same system is 8.7 seconds. (i) Calculate the molecular mass of the unknown gas. 						
 (ii) Analysis of the unknown gas gave the following percentage composition by mass: C (9.9 %), Cl (58.6 %), F (31.5 %). Determine the empirical formula of the compound. 						
(iii) From the calculations in (i) and (ii), what is the molecular formula of the gas?	_					
 Calculate the heat input required (in J) for the conversion of 9.0 g of water from ice at 273 K to steam at 373 K. 	2					
Data: $C_{\rm p} {\rm H}_2 {\rm O}(1) = 75 {\rm J} {\rm K}^{-1} {\rm mol}^{-1}$ $\Delta H_{\rm vap} {\rm H}_2 {\rm O}(1) = 41 {\rm kJ} {\rm mol}^{-1} \qquad \Delta H_{\rm fus} {\rm H}_2 {\rm O}(s) = 6.0 {\rm kJ} {\rm mol}^{-1}$						

CHEM1611	2003-J-6	June 2003	89/06(a)
• The formulation of a pharmac chloride to make it isotonic wi	eutical to be delivered by inject th blood plasma. Why is this no	ion includes sodium ecessary?	Marks 2
• A solution of volume 2.00 L v (0.10 M) and sulfuric acid (0.1 Assuming no volume change,	was prepared by mixing equal v 10 M). To this, sodium hydroxi what is the pH of the final solu	volumes of nitric acid ide (10.0 g) was added. tion?	3
	pH =		
• Acetic acid (100 mL, 0.20 M) Calculate the final pH of the se	is mixed with solid sodium hydrolution. pK_a of acetic acid = 4.	droxide (0.010 mol). 76	3
	[
	pH =		

Marks • A specific variety of haemoglobin associated with heart disease was isolated from a 4 blood sample. A sample of this haemoglobin (21.5 mg) is dissolved in water at 25 °C to make 1.50 mL of solution. The osmotic pressure of the solution was measured and found to be 3.61 mmHg. What is the molar mass of this particular type of haemoglobin? Answer: 3 Calcium oxalate (CaC₂O₄) is only slightly soluble in water (5.73 mg L^{-1} at 25 °C) and ٠ can be deposited in renal calculi (kidney stones). What is the molar solubility of calcium oxalate? Answer: Calculate the solubility product constant (K_{sp}) of calcium oxalate at 25 °C. $K_{sp} =$

• What mass (in gram) of Fe(OH) ₂ is pr solution of NaOH undergoes electrolysis a	roduced at an iron electrode when a basic at a current of 8.00 mA for 12.0 min?	Marks 3
	Answer	
• Technetium-99 is used to monitor blood 6.02 hours. A sample is prepared with an activity after 8.00 hours?	d flow near the heart. It has a half life of n activity of 4.52×10^{-6} Ci. What will be its	3
	Answer:	
• Consider the following half-reactions and $2ClO_3^- + 12H^+ + 10e^- \rightarrow Cl_2$ $S_2O_8^{2-} + 2e^- \rightarrow 2SC$ Give the overall cell reaction.	their standard reduction potentials. $E^{\circ} = 1.47 \text{ V}$ D_4^{2-} $E^{\circ} = 2.01 \text{ V}$	3
Calculate ΔG° and hence the value of K_{c} f	For the cell reaction at 298 K.	

• Indicate a	• Indicate a biological function for each of the following elements.						
Element	Biological Function						
cobalt							
sodium							
iodine							
magnesium							
zinc							
• Briefly exp half-life.	plain why a radionuclide used in diagnostic work should have a short	2					
• Briefly exp	plain why alpha emitters are not used in diagnostic work.	2					

The University of Sydney

CHEM1611 - CHEMISTRY 1 (PHARMACY)

FIRST SEMESTER EXAMINATION

JUNE 2003

Numerical Data

Physical constants

Planck constant = $h = 6.626 \times 10^{-34}$ J s Speed of light in vacuum = $c_0 = 2.998 \times 10^8$ m s⁻¹ Avogadro constant = $N_A = 6.022 \times 10^{23}$ mol⁻¹ Faraday constant = F = 96485 C mol⁻¹ Ideal gas constant = R = 8.314 J K⁻¹ mol⁻¹ = 0.08206 L atm K⁻¹ mol⁻¹ Volume of 1 mol of ideal gas at 1 atm, 0 °C = 22.4 L Volume of 1 mol of ideal gas at 1 atm, 25 °C = 24.5 L Density of water at 1 atm, 25 °C = 0.997 g cm⁻³

Conversion factors

0 °C = 273 K 1 atm = 101.3 kPa = 760.0 mmHg 1 nm = 10^{-9} m 1 MHz = 10^{6} Hz = 10^{6} s⁻¹ 1 L = 10^{-3} m³

> A periodic table is printed on the other side of this data sheet. Atomic weights are included in the periodic table.

June 2003

CHEM1611 - CHEMISTRY 1 (PHARMACY)

Ð	
Q	
$\frac{1}{2}$	
89	
••	

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 hydrogen H 1.008																	2 нешим Не 4.003
3 LITHIUM Li	4 BERYLLIUM Be											5 boron B	6 CARBON C	7 Nitrogen N	8 oxygen O	9 ^{fluorine} F	10 _{NEON} Ne
6.941 11 ^{зоргим} Na	9.012 12 magnesium Mg											10.81 13 ALUMINIUM	12.01 14 silicon Si	14.01 15 рнозрногиз Р	16.00 16 ^{SULFUR} S	19.00 17 ^{CHLORINE}	20.18 18 ARGON Ar
22.99 19 ротаssium	24.31 20 CALCIUM	21 scandium	22	23 VANADIUM	24	25 manganese	26 IRON	27 COBALT	28 NICKEL	29 COPPER	30 zinc	26.98 31 GALLIUM	28.09 32 GERMANIUM	30.97 33 ARSENIC	32.07 34 selenium	35.45 35 BROMINE	39.95 36 KRYPTON
K 39.10 37	Ca 40.08 38	Sc 44.96 39	47.88 40	V 50.94 41	Cr 52.00 42	Min 54.94 43	Fe 55.85 44	Co 58.93 45	Ni 58.69 46	63.55 47	Zn 65.39 48	Ga 69.72 49	Ge 72.59 50	As 74.92 51	Se 78.96 52	Br 79.90 53	Kr 83.80 54
Rb 85.47	87.62	Y 88.91	21.22 91.22	Nobion Nb 92.91 73	MOINDEROM MO 95.94 74	Tc [98.91]	Ru 101.07	Rh 102.91 77	Pd 106.4 78	Ag 107.87	Cd 112.40	In 114.82	Sn 118.69	Sb 121.75	Te 127.60	I 126.90 85	Xe 131.30
слевии Св 132.91	вакіим Ва 137.34	57-71	172 нағышм Наг 178.49	талтаLum Та 180.95	TUNGSTEN W 183.85	кнепим Re 186.2	озмиим Os 190.2	піліция Ir 192.22	ратілим Рt 195.09	GOLD GOLD Au 196.97	мексику Нд 200.59	тнации Tl 204.37	еле во 2 еле во 207.2	візмитн Ві 208.98	роLONIUM Ро [210.0]	ASTATINE At [210.0]	RADON RADON [222.0]
87 FRANCIUM Fr [223.0]	88 ^{RADIUM} [226.0]	89-103	8 104 RUTHERFORD Rf [261]	им 105 ^{дивним} Db [262]	106 seaborgium Sg [266]	107 воняши Вh [262]	108 назвішм Hs [265]	109 меттлекіим Mt [266]									
LANTHANID	ES LANTHA	7 NUM СП д (91 14	58 ERIUM C e 0.12	59 praseodymium Pr 140,91	60 NEODYMIUM Nd 144 24	61 promethium Pm [144 9]	62 samarium Sm 150.4	63 еигоріим Еи 151.96	64 GADOLINIU GAD 157.25	м 65 текви 5 158	б им ру р 93 1	66 sprosium Dy 62 50	67 ^{ноімим} Но	68 еквиим Ег 167-26	69 тнолим Тт 168 93	70 ytterbium Yb 173.04	71 LUTETIUM LU 174 97
ACTINIDES	5 Activit [227) () UM TH C [] .0] 23	90 orium Th 2.04	91 PROTACTINIUM Pa [231.0]	92 URANIUM U 238.03	93 NEPTUNIUM Np [237.0]	94 PLUTONIUM Pu [239.1]	95 AMERICIUM Am [243.1]	96 ^{CURIUM} [247.1	97 BERKEL] [247	7 LIUM CAI K .1] [2	98 LIFORNIUM E Cf 252.1] [99 INSTEINIUM Es 252.1]	100 ^{FERMIUM} Fm [257.1]	101 мендеleviuм Md [256.1]	102 NOBELIUM NO [259.1]	103 LAWRENCIUM Lr [260.1]

PERIODIC TABLE OF THE ELEMENTS