The University of Sydney

<u>CHEM1611 - CHEMISTRY 1A (PHARMACY)</u> <u>FIRST SEMESTER EXAMINATION</u>

CONFIDENTIAL

JUNE 2004 TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY	SID	
NAME	NUMBER	
OTHER	TABLE	
NAMES	NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 14 pages of examinable material.
- Complete the written section of the examination paper in **INK**.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent table.
- Each new question of the short answer section begins with a •.
- Electronic calculators, including programmable calculators, may be used.
 Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- A Periodic Table and numerical values required for any question may be found on a separate data sheet.
- Pages 13, 15, 17, 19 & 20 are for rough working only.

OFFICIAL USE ONLY

Multiple choice section

	Marks			
Page	Max	Gained		
2-6	28			

Short answer section

	Marks				
Page	Max	Gained		Marker	
7	11				
8	7				
9	4				
10	5				
11	9				
12	7				
14	8				
16	10				
18	11				
Total	72				
Check Total					

• Complete the following table. Give, as required, the formula, the systematic name, the oxidation number of the underlined atom and, where indicated, the principal ions present in a solution prepared by adding the substance to water.					Marks 4	
FORMULA	SYSTE	EMATIC NAME OXIDATION NUMBER		PRINCIPAL IONS IN WATER SOLUTION		
<u>N</u> O ₂					N/A	
<u>Pb</u> (CH ₃ CO ₂) ₂						
					Mg ²⁺ (aq); <u>Cl</u> O ₄ ⁻ (aq)	
Write the full	electron con	afiguration of the A	s ³⁺ ion.			
		s, showing all valencies have contributing			he following species.	5
HCO ₃ ⁻		COS	CN ⁻		-	
Resonance: YES	S / NO	Resonance: YES	/ NO	Res	onance: YES / NO	
• Name the two intermolecular forces, which best explain the difference in boiling points of 1-propanol (CH ₃ CH ₂ CH ₂ OH; bp = 97.2 °C) and 1-propanethiol (CH ₃ CH ₂ CH ₂ SH; bp = 67.8 °C).					2	

89/06(a)Marks 7

• Siderophores (from the Greek meaning 'iron carriers') are organic molecules produced by microorganisms to provide essential Fe³⁺ required for growth. The functional group (the group which binds Fe³⁺) of siderophores is shown below as tautomers I and II. Complete the table below, relating to the molecular geometry about the specified atoms in **I** and **II**.

2004-J-3

I
$$\stackrel{\text{O}}{\underset{\text{CH}_3}{\text{--C-NH-OH}}}$$
 II $\stackrel{^{4}\text{OH}}{\underset{\text{CH}_3}{\text{--C-N-OH}}}$

Atom	Geometric arrangement of the electron pairs around the atom	Hybridisation of atom	Geometry of bonding electron pairs around atom
¹ C			
² N			
³ C			
⁴ O			
⁵ N			

Desferal is a siderophore-based drug that is used in humans to treat iron-overload. One molecule of Desferal (molecular formula: C₂₅H₄₈O₈N₆) can bind one Fe³⁺ ion. A patient with iron-overload had an excess of 0.637 mM Fe³⁺ in his bloodstream. Assuming the patient has a total blood volume of 5.04 L, what mass of Desferal would be required to complex all of the excess Fe³⁺?

	ANSWER:		
THIS OURSTION CONTINUES ON THE NEXT PAGE			

	nemoglobin is	

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

	rm, acidic conditions where sulfuric acid is m the reaction between sulfur (S), water and n for this reaction.
Calculate the volume of oxygen that is r of sulfur at 1.00 atm and 55 °C.	required to react to completion with 0.0655 g
	ANSWER:
Calculate the pH of the final solution if a Assume that the sulfuric acid fully disso	the reaction is carried out in 20.0 L of water. ociates.
	ANSWER

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

• Complete the following table. Make sure you give the name of the product or starting material where requested.

Marks 9

STARTING MATERIAL	REAGENTS/CONDITIONS	CONSTITUTIONAL FORMULA(S) OF MAJOR ORGANIC PRODUCT(S)
	HBr / CCl ₄ (solvent)	
Name:		
S	Zn / H [⊕]	
Name:	Br ₂ / CCl ₄ (solvent)	
	CH ₃ S [⊖]	S CH ₃
CH₃CH₂CH₂Br	(CH ₃ CH ₂) ₃ N	
Name:		OCH ₃ OCH ₃

• Complete the following table.

Marks 7

STARTING MATERIAL	REAGENTS/CONDITIONS	CONSTITUTIONAL FORMULA(S) OF MAJOR ORGANIC PRODUCT(S)
ОН		O Na ⊕
ОН		O CH ₃
	$ ext{H}^{\oplus}/ ext{H}_2 ext{O}$	
	1. NaBH ₄ 2. H [⊕] / H ₂ O	
CI		O CH ₃
	$ m H_2$ / $ m Pd$	
	CH ₃ —C—Cl / AlCl ₃	

• Show clearly the reagents you would use to carry out the following chemical conversions. Draw constitutional formulas for any intermediate compounds. Marks 8

The stucture of D-mannos L-mannose in the space print		ow. Draw the Fi	ischer project	ion of	Marks 10
HO HO D-mannose H)——Н	L-mannose			
D-Mannose is in equilibrit projection of these two cy		clic pyranose fo	orms. Give th	ne Haworth	
Give the products obtained			ith the follow	ving reagents.	
methanol / H [⊕]	[Ag(NH ₃) ₂] [⊕] /	OH [⊖] solution	1. NaBH₄	2. dilute acid	
Draw the Haworth structu yields D-mannose as the o	-	g disaccharide, v	which, on acid	d hydrolysis,	

• The constitutional formula of the tripeptide seryllysylalanine (Ser-Lys-Ala), **M**, is shown below.

Marks 11

$$\begin{array}{c|c} HO & H & O \\ H_2N & N & O \\ \hline \\ (M) & NH_2 & \end{array}$$

Draw the Fischer projections for the L-configurations of the amino acids formed when compound ${\bf M}$ is hydrolysed with hot 6 M hydrochloric acid.

The p K_a values of lysine are p $K_{a1} = 1.82$ (α -COOH), p $K_{a2} = 8.95$ (α -NH₃^{\oplus}) and p $K_{a3} = 10.53$ (-(CH₂)₄)NH₃^{\oplus}). Give the structures of the predominant species present in a solution of lysine at pH 12 and at pH 5.6.

pH 12.0	pH 5.6

Give the constitutional formulas for the following dipeptides in their zwitterionic states.

Lys-Ser	Ser-Ala
	Lys-Ser

CHEM1611 - CHEMISTRY 1A (PHARMACY)

DATA SHEET

Physical constants

Avogadro constant, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

Faraday constant, $F = 96485 \text{ C mol}^{-1}$

Planck constant, $h = 6.626 \times 10^{-34} \,\mathrm{J s}$

Speed of light in vacuum, $c = 2.998 \times 10^8 \text{ m s}^{-1}$

Boltzmann constant, $k_{\rm B} = 1.381 \times 10^{-23} \,\mathrm{J K}^{-1}$

Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$

 $= 0.08206 L atm K^{-1} mol^{-1}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L

Volume of 1 mole of ideal gas at 1 atm and $0 \,^{\circ}\text{C} = 22.4 \,^{\circ}\text{L}$

Density of water at 298 K = 0.997 g cm^{-3}

Conversion factors

$$1 \text{ atm} = 760 \text{ mmHg} = 101.3 \text{ kPa}$$

$$0 \, ^{\circ}\text{C} = 273 \, \text{K}$$

$$1 L = 10^{-3} \text{ m}^3$$

$$1 \text{ Å} = 10^{-10} \text{ m}$$

$$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$$

$$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$$

$$1 \text{ Hz} = 1 \text{ s}^{-1}$$

1	Decimal fi	ractions	Deci	Decimal multiples							
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol						
10^{-3}	milli	m	10^{3}	kilo	k						
10^{-6}	micro	μ	10^{6}	mega	M						
10^{-9}	nano	n	10 ⁹	giga	G						
10^{-12}	pico	p									

CHEM1611 - CHEMISTRY 1A (PHARMACY)

Standard Reduction Potentials, E°

	<i>'</i>
Reaction	E° / V
$\text{Cl}_2 + 2\text{e}^- \rightarrow 2\text{Cl}^-(\text{aq})$	+1.36
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$	+0.80
$Fe^{3+}(aq) + e^{-} \rightarrow Fe^{2+}(aq)$	+0.77
$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2H^{+}(aq) + 2e^{-} \rightarrow H_{2}(g)$	0 (by definition)
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$	-0.04
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.24
$Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$	-0.44
$Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$	-0.74
$Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$	-0.76
$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83
$Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$	-0.89
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.68
$Mg^{2+}(aq) + 2e^- \rightarrow Mg(s)$	-2.36
$Na^{+}(aq) + e^{-} \rightarrow Na(s)$	-2.71

CHEM1611 - CHEMISTRY 1A (PHARMACY)

Useful formulas

Quantum Chemistry

$$E = hv = hc/\lambda$$

$$\lambda = h/mu$$

$$4.5k_{\rm B}T = hc/\lambda$$

Kinetics

$$k = Ae^{-Ea/RT}$$

$$t_{1/2} = \ln 2/k$$

$$ln[A] = ln[A]_o - kt$$

Colligative properties $\pi = cRT$

$$p = kc$$

$$\Delta T_{\rm f} = K_{\rm f} m$$

$$\Delta T_{\rm b} = K_{\rm b} m$$

Electrochemistry

$\Lambda G^{\circ} = -nFE^{\circ}$

$$Moles\ of\ e^- = It/F$$

$$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$$

$$E^{\circ} = (RT/nF) \times 2.303 \log K$$

$$E = E^{\circ} - \frac{0.0592}{n} \log Q$$
 (at 25 °C)

Gas Laws

$$PV = nRT$$

$$(P + n^2 a/V^2)(V - nb) = nRT$$

Radioactivity

$$A = \lambda N$$

$$\ln(N_0/N_t) = \lambda t$$

14
C age = 8033 $\ln(A_0/A_t)$

Acids and Bases

$$pK_{w} = pH + pOH = 14.00$$

$$pK_w = pK_a + pK_b = 14.00$$

$$pH = pK_a + log\{[A^-] / [HA]\}$$

Thermodynamics & Equilibrium

$$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$$

$$\Delta G = \Delta G^{\circ} + RT \ln Q$$

$$\Delta G^{\circ} = -RT \ln K$$

$$K_{\rm p} = K_{\rm c} (RT)^{\Delta \rm n}$$

Polymers

$$R_{\rm g} = \sqrt{\frac{nl_0^2}{6}}$$

Mathematics

$$\ln x = 2.303 \log x$$

If
$$ax^2 + bx + c = 0$$
, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

PERIODIC TABLE OF THE ELEMENTS

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1																	2
HYDROGEN																	нелим Не
1.008																	4.003
3	4]										5	6	7	8	9	10
LITHIUM	BERYLLIUM											BORON	CARBON	NITROGEN	OXYGEN	FLUORINE	NEON
Li	Be											В	C	N	О	F	Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	MAGNESIUM Mg											ALUMINIUM	Silicon	PHOSPHORUS P	SULFUR	Cl	Argon Ar
22.99	24.31											26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
POTASSIUM	CALCIUM	SCANDIUM	TITANIUM	VANADIUM	CHROMIUM	MANGANESE	IRON	COBALT	NICKEL	COPPER	ZINC	GALLIUM	GERMANIUM	ARSENIC	SELENIUM	BROMINE	KRYPTON
K	Ca	Sc	Ti	${f V}$	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
RUBIDIUM Rb	STRONTIUM	YTTRIUM	zirconium Zr	NIOBIUM Nb	MOLYBDENUM Mo	Technetium Tc	RUTHENIUM Ru	RHODIUM	PALLADIUM Pd	SILVER	CADMIUM	Indium In	Sn	Sb	Tellurium Te	IODINE	XENON Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98.91]	101.07	102.91	106.4	Ag 107.87	112.40	114.82	118.69	121.75	127.60	126.90	131.30
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
CAESIUM	BARIUM	37-71	/ ∠ HAFNIUM	7 J TANTALUM	TUNGSTEN	RHENIUM	OSMIUM	/ / IRIDIUM	/ O PLATINUM	GOLD	MERCURY	O 1 THALLIUM	OZ LEAD	BISMUTH	O4 POLONIUM	ASTATINE	RADON
Cs	Ba		Hf	Ta	\mathbf{W}	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.91	137.34		178.49	180.95	183.85	186.2	190.2	192.22	195.09	196.97	200.59	204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
87		89-103		105	106	107	108	109									
FRANCIUM	RADIUM		RUTHERFORDIUM Rf	Db	SEABORGIUM Sg	Bh	HASSIUM HS	MEITNERIUM Mt									
[223.0]	[226.0]		[261]	[262]	[266]	[262]	[265]	[266]									
[223.0]	[220.0]	l	[201]	[202]	[200]	[202]	[203]	[200]									

LANTHANIDES	57 Lanthanum La 138.91	58 CERIUM Ce 140.12	59 PRASEODYMIUM Pr 140.91	60 NEODYMIUM Nd 144.24	61 PROMETHIUM Pm [144.9]	62 SAMARIUM Sm 150.4	63 Europium Eu 151.96	64 GADOLINIUM Gd 157.25	65 TERBIUM Tb 158.93	66 DYSPROSIUM Dy 162.50	67 ногмічм Но 164.93	68 Erbium Er 167.26	69 THULIUM Tm 168.93	70 YTTERBIUM Yb 173.04	71 Lu Lu 174.97
ACTINIDES	89 ACTINIUM Ac [227.0]	90 THORIUM Th 232.04	91 PROTACTINIUM Pa [231.0]	92 uranium U 238.03	93 NEPTUNIUM Np [237.0]	94 PLUTONIUM Pu [239.1]	95 AMERICIUM Am [243.1]	96 curium Cm [247.1]	97 BERKELLIUM Bk [247.1]	98 californium Cf [252.1]	99 EINSTEINIUM ES [252.1]	100 FERMIUM Fm [257.1]	101 MENDELEVIUM Md [256.1]	102 Nobelium No [259.1]	103 LAWRENCIUM Lr [260.1]