^{89/07(a)} The University of Sydney

CHEM1612 - CHEMISTRY 1B (PHARMACY)

SECOND SEMESTER EXAMINATION

CONFIDENTIAL

NOVEMBER 2002

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY	SID	
NAME	NUMBER	
OTHER	TABLE	
NAMES	NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 13 pages of examinable material.
- Complete the written section of the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent table.
- Each new question of the short answer section begins with a •.
- Electronic calculators, including programmable calculators, may be used.
 Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- A Periodic Table and numerical values required for any question may be found on a separate data sheet.
- Pages 13 & 16 and part of the data sheet are for rough working only.

OFFICIAL USE ONLY

Multiple choice section

Short answer section

		Marks		
Page	Max	Gained	d	Marker
2	8			
3	7			
4	6			
10	13			
11	4			
12	8			
14	10			
15	9			
Total	65			
Check	Total			

CHEM1612 - Chem	nistry 1B (Pharmacy)	2002-N-2	November 2002	89/07(a)			
• The visual range What frequency a	of the electromagnetic spo and energy range does the	ectrum lies between a visual spectrum spar	about 450 and 700 nm. 1?	Mark s 3			
frequency range							
energy range							
• What is meant by	the electron density at a	particular point in sp	pace?	1			
				2			
• Which of the foll	owing has the higher first	ionisation energy? G	ive reasons for your answe	ers.			
O or F							
O or S							
Double and triple occasionally seen bonds involving of	e bonds are commonly ob in compounds involving elements in the fourth or s	served between secon third row elements. 7 ubsequent rows. Exp	nd row elements and are They are not observed in plain these observations.	2			

• Carbon monoxide, CO, might be expected to be quite polar. Its measured dipole moment (0.12 Debye), however, is small. (CH ₃ OH, for example, has a dipole moment of 1.71 Debye.)	Mark s 5
Draw a Lewis structure for carbon monoxide and assign formal charges to the atoms.	
Hence rationalise the small size of the dipole moment of carbon monoxide.	
 Predict which member of each pair of the following solutes is more soluble in water. Give reasons for your answer. 	2
1-butanol (CH ₃ CH ₂ CH ₂ CH ₂ OH) or 1,4-butanediol (HOCH ₂ CH ₂ CH ₂ CH ₂ OH)	
chloroform (CHCl ₃) or carbon tetrachloride (CCl ₄)	-

2002-N-4

Mark

S

3

• Some of the earliest antibacterial agents belong to the family of benzenesulfonamide derivatives:

Complete the Lewis structure above by including all lone pair electrons.

What is the geometry about the S atom?

What is the hybridisation of the two O atoms?

Estimate the CCC bond angle in the ring.

How many π electrons are there in this molecule?

• The boiling points of H₂O, H₂S and H₂Te are 100 °C, -60 °C and -2 °C respectively. Nominate the dominant intermolecular force present between molecules in the liquid phase of each pure substance. Give reasons for your answer.

H ₂ O			
H ₂ S			
H ₂ Te			

89/07(a)

• Complete the following material where requested	g table. Make sure you also give the	ne name of the product or starting	Mark s 13
STARTING MATERIAL	REAGENTS/CONDITIONS	CONSTITUTIONAL FORMULA(S) OF MAJOR ORGANIC PRODUCT(S)	
	Cl_2 / $FeCl_3$		
CH ₃ CH ₂ CHO		OH CH ₃ CH ₂ CHCH ₃ Name:	-
CH ₃ CH=CHCH ₃	dilute H ₂ SO ₄ / heat		
SH	1. NaOH 2. CH ₃ I		
	1. LiAlH ₄ / dry ether 2. H [⊕] / H ₂ O		
Name:			
$CH_3 \longrightarrow CH_2CH_2CH_3$ Name:	$\mathrm{H}^{\oplus}/\mathrm{H}_{2}\mathrm{O}/\mathrm{heat}$		
O O	excess CH ₃ CH ₂ NH ₂		
OH			

Mark Consider the following two monosaccharides A and B. • S 8 CH₂OH CH₂OH OH ОН Ĥ ОН НО HĊ Ĥ ÓН ÓН Ĥ ÓН Ĥ A: α-D-allopyranose **B**: β -D-lyxofuranose Draw Fischer projections of the open chain forms of A and B. Give the products obtained when D-allose is treated with the following reagents. $[Ag(NH_3)_2]^+ / OH^-$ solution $NaBH_4$ in methanol solvent Draw the Haworth structure of a non-reducing disaccharide, which yields D-allose and Dlyxose on acid hydrolysis.

Consider the tripeptide lysinylserinyltyrosine shown below.	e (Lys-Ser-Tyr), whose constitutional formula is	Mark s 10
$H_{2}N$ H	H COOH CH2 OH	
Draw the constitutional formula(s) of the pro- subjected to the following conditions.	duct(s) obtained when the tripeptide is	
cold 2 M NaOH		
5 M HCl / heat		
The p K_a values of lysine are p $K_{a1} = 2.18 (\alpha - pK_{a3} = 10.53 (-(CH_2)_4 NH_3^{\oplus}).$	-COOH), $pK_{a2} = 8.95 (\alpha - NH_3^{\circ})$ and	
Draw the structure of the zwitterionic form of	f lysine.At what pH will this be the predominant species	
	in aqueous solution?	
Give the constitutional formulas for these dip	eptides in their zwitterionic states.	
Tyr-Ser	Ser-Lys	

2002-N-9 CHEM1612 - Chemistry 1B (Pharmacy) November 2002 89/07(a) Mark • Organic compounds may be readily separated in the laboratory by extraction methods using S acid-base chemistry. Complete the following flowsheet by showing the constitutional 9 formulas of all species that will be present in the aqueous and organic phases and hence 2-hydroxynaphthalene show how mixture of naphthalene, a and 2-phenylethylamine could be separated. OH NH₂ Add 3 M NaOH Add ether

NB To be fixed up!

The University of Sydney

CHEM1612 - CHEMISTRY 1B (PHARMACY)

SECOND SEMESTER EXAMINATION

NOVEMBER 2002

TIME ALLOWED: THREE HOURS

Numerical Data

Physical constants

Planck constant	=h	$e = 6.626 \times 10^{-34} \text{ J s}$
Speed of light	= 0	$c = 2.998 \times 10^8 \text{ m s}^{-1}$
Avogadro constar	ıt	$= N_{\rm A} = 6.022 \times 10^{23} {\rm mol}^{-1}$

Conversion factors

1 kJ = 10^3 J 1 Hz = 1 s⁻¹ 1 nm = 10^{-9} m

A periodic table is printed on the other side of this data sheet. Atomic weights are included in the periodic table.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 нуdrogen Н 1.008																	2 нелим Не 4.003
3	4											5	6	7	8	9	10
Li	Be											B	CARBON	NIROCEN	ONIGEN	F	Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	MAGNESIUM											Alomnom	Silicon	PHOSPHORUS	SULFUR	CI	Arcon
22.99	24.31				-							26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	AS	Se	Br	Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	SRONHUM	YIRIOM	ZIRCONIUM	Nobiom	MOLYBBENOM	Тс	RUTHENIUM	Rhobitim	PALLADIUM	Ag	Cd	Indian	Sn	Sb	Te	I	XENON
85.47	87.62	88.91	91.22	92.91	95.94	[98.91]	101.07	102.91	106.4	107.87	112.40	114.82	118.69	121.75	127.60	126.90	131.30
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
CAESIUM CS	Вакіим		HAFNIUM Hf	тантацим Та	TUNGSTEN	RHENIUM		IRIDIUM	PLATINUM Pt		Ho	THALLIUM	Pb	візмитн Ві	POLONIUM	ASTATINE	RADON Rn
132.91	137.34		178.49	180.95	183.85	186.2	190.2	192.22	195.09	196.97	200.59	204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
87	88	89-103	104	105	106	107	108	109									
FRANCIUM	RADIUM Ra		RUTHERFORDIUM Rf	DUBNIUM Dh	SEABORGIUM	BOHRIUM Bh	HASSIUM HS	MEITNERIUM Mt									
[223.0]	[226.0]		[261]	[262]	[266]	[262]	[265]	[266]									
						1 6 7 1		L J	I								
	57	7 5	8	59	60	61	62	63	64	65	5 6	66	67	68	69	70	71
LANTHANII	DE LANTHA		RIUM PRA	SEODYMIUM Pr	NEODYMIUM Nd	PROMETHIUM Pm	samarium Sm	EUROPIUM		m terbi	um dysp	ROSIUM I		ERBIUM Fr	THULIUM Tm	ytterbium Vh	LUTETIUM Тлч
3					1 TU	1 111		Ľu	Ju	1,		J		1 ./1	1 111	10	Lu

151.96

157.25

158.93

162.50

164.93

167.26

168.93

173.04

174.97

144.24

[144.9]

150.4

140.91

(q)/02(p)

138.91

140.12

ACTINIDES	89 actinium	90 THORIUM	91 protactinium	92 uranium	93 NEPTUNIUM	94 plutonium	95 Americium	96 curium	97 BERKELLIUM	98 californium	99 EINSTEINIUM	100 Fermium	101 mendelevium	102 NOBELIUM	103 LAWRENCIUM
ACTINIDES	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	[227.0]	232.04	[231.0]	238.03	[237.0]	[239.1]	[243.1]	[247.1]	[247.1]	[252.1]	[252.1]	[257.1]	[256.1]	[259.1]	[260.1]