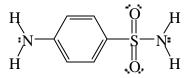
2002-N-2

- $4.29 \times 10^{14} \text{ Hz} 6.67 \times 10^{14} \text{ Hz}$ $2.84 \times 10^{-19} \text{ J} - 4.42 \times 10^{-19} \text{ J}$ (171 kJ mol⁻¹ - 266 kJ mol⁻¹)
- Electron density is the probability of finding an electron at that point in space.
- F: The 2p electrons are not effective in screening other 2p electrons, so the electrons in F feel a higher effective nuclear charge in F than in O.
 O: The 2p electrons in O are closer to the nucleus and therefore held more tightly than the 3p electrons in S.
- To get strong double and triple bonds the nuclei need to be close together, since the orbital overlap in a π -type bond is not as good as in a σ -type bond. Hence only small atoms (mainly second row) can form multiple bonds.

2002-N-3

Θ

•


= O: Electronegativity values suggest that the O would be δ - and the C would be δ +. The formal charges, however, counteract the electronegativity differences and a small molecular dipole results.

• 1,4-Butanediol will be more soluble in water as it can form more hydrogen bonds than 1-butanol.

Chloroform will be more soluble as it is more polar than carbon tetrachloride. Being more polar, it will have stronger dipole-dipole interactions with the very polar solvent.

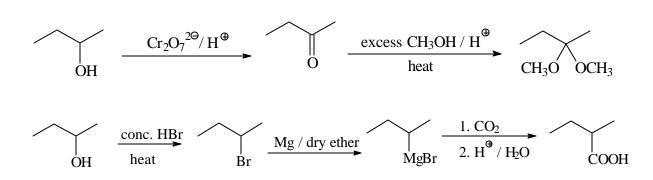

```
•
```


tetrahedral

```
sp^2
```

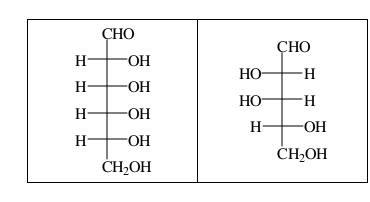
120°

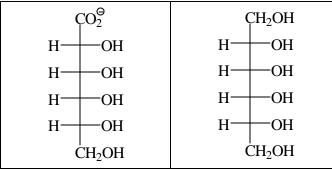
- 10
- Hydrogen bonding: O is small enough and electronegative enough to form H-bonds.

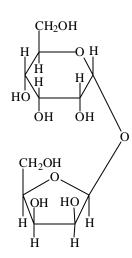

Dipole-dipole: The H_2S molecule has a dipole - S is too big to form H-bonds, yet not big enough to have significant dispersion forces.

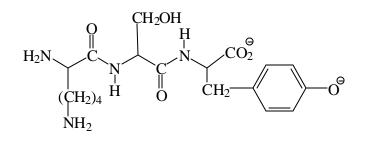
Dispersion: Te is less electronegative than S, so the dipole in H_2 Te is less than that in H_2 S. However, the b.p. of H_2 Te is greater than that of H_2 S, so the dominant force must be dispersion forces - Te is much larger atom than S and therefore more polarisable.

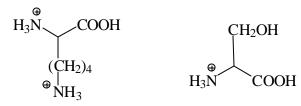
		Cl
	1) CH ₃ MgI 2) H ⁺ / H ₂ O	2-butanol
		CH ₃ —CH—CH ₂ CH ₃ OH
		SCH3
3-methylcyclohexanone		ОН
1-propyl acetate		CH ₃ COOH + HOCH ₂ CH ₂ CH ₃
		$CH_{3} - C - N - CH_{2}CH_{3}$ $H + CH_{3}CO_{2}^{\Theta} \qquad \overset{\Theta}{N}H_{3}CH_{2}CH_{3}$
	conc. H ₂ SO ₄ / heat	


•


•




2002-N-7


•

