INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 14 pages of examinable material.
- Complete the written section of the examination paper in **INK**.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent table.
- Each new question of the short answer section begins with a •.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- A Periodic Table and numerical values required for any question may be found on a separate data sheet.
- Pages 8, 10, 16, 18 & 20 are for rough working only.
• Gamma emission involves the radiation of high energy γ photons and accompanies most types of radioactive decay processes. γ photons typically have wavelengths less than 0.1 Å. Calculate the energy of a photon with wavelength $\lambda = 0.1$ Å. Give your answer in J per photon and kJ mol$^{-1}$.

\[
E = \quad \text{J per photon} \quad E = \quad \text{kJ mol}^{-1}
\]

Why is high energy or gamma radiation called ionising radiation?

• What are two of the key results arising from a wavelike description of matter?

• Each of the following electron configurations represents an atom in an excited state. Identify the element and write its ground state electron configuration.

<table>
<thead>
<tr>
<th>Electron configuration of excited state</th>
<th>Element</th>
<th>Electron configuration of ground state</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^4 \ 4s^1$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 4s^2 \ 3d^3$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• State Hund’s rule and illustrate its application in the orbital box diagram of the nitrogen atom.

```
N  1s  2s  2p_x  2p_y  2p_z
```

• The atomic radius decreases across a period and increases down a group within the periodic table. Explain these observations.

• A molecule with formula of type AX_3 is found to be polar. Which molecular shapes are possible for this molecule?
• The structures of dopamine and mescaline are given below.

Dopamine is involved in the transmission of nerve impulses in the brain. Complete the Lewis structure for dopamine by including all lone pair electrons.

How many \(\pi \) electrons are there in dopamine?

Predict the bond angles at the points labelled \(a \), \(b \), and \(c \) in dopamine.

\[
\begin{array}{c}
a \\
b \\
c \\
\end{array}
\]

Mescaline is an hallucinogenic compound found in the peyote cactus. Suggest a reason for the ability mescaline to disrupt nerve impulses.

Which compound, dopamine or mescaline, has the higher solubility in water? Give reasons for your answer.
• Strong hydrogen bonds, –B––H–A–, are typically found when both A and B are N, O, or F atoms. Give reasons for this observation.

• For each of the following pairs, which substance has the lower boiling point? Give reasons for your answer.

(a) MgCl₂ and PCl₃

(b) CH₃OH and CH₃CH₂OH
Complete the following table. Make sure you give the name of the product or starting material where requested.

<table>
<thead>
<tr>
<th>STARTING MATERIAL</th>
<th>REAGENTS/CONDITIONS</th>
<th>CONSTITUTIONAL FORMULA(S) OF MAJOR ORGANIC PRODUCT(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OH⁻/H₂O/heat</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HBr/CCl₄(solvent)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H⁺/H₂O/heat</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Name:

- Benzaldehyde: 1. NaBH₄, 2. H⁺/H₂O
• Show clearly the reagents you would use to carry out the following chemical conversions. Draw constitutional formulas for any intermediate compounds.
NOTE: more than one step is necessary in each case.
The structure of D-glucose is shown below. Draw the Fischer projection of L-glucose in the space provided.

\[
\begin{align*}
\text{D-glucose} & & & & \text{L-glucose} \\
\text{CHO} & & \text{HO} & & \text{H} \\
\text{H} & & \text{OH} & & \text{H} \\
\text{HO} & & \text{H} & & \text{OH} \\
\text{H} & & \text{OH} & & \text{CH}_2\text{OH} \\
\end{align*}
\]

D-glucose is in equilibrium with two cyclic pyranose forms. Give the Haworth projection of these two cyclic forms.

Give the products obtained when D-glucose is treated with the following reagents.

- methanol / H⁺
- \([\text{Ag(NH}_3)_2]^+ / \text{OH}^-\) solution

1. NaBH₄
2. dilute acid

Draw the Haworth structure of a non-reducing disaccharide, which, on acid hydrolysis, yields D-glucose as the only product.
• The structure of the naturally occurring tetrapeptide His-Phe-Ala-Glu, \(A \), is shown below as the zwitterion.

![Zwitterion structure of His-Phe-Ala-Glu](image)

Give the product(s) obtained when \(A \) is treated with cold 1 M NaOH.

Vigorous acid hydrolysis of \(A \) gives four products. Give the structures of these four products in their correct ionic states as Fischer projections.

The heterocycle present in the sidechain of histidine is imidazole, whose structure is shown on the right. Give the structure of a tautomer of imidazole and state, giving reasons, whether your tautomer is aromatic.

What is the major species present when histidine is dissolved in water at pH 12. The \(pK_a \) values of histidine are 1.82 (-COOH), 9.17 (-NH\(_3^+\)) and 6.04 (sidechain).
CHEM1612 - CHEMISTRY 1B (PHARMACY)

DATA SHEET

Physical constants

Avogadro constant, \(N_A = 6.022 \times 10^{23} \text{ mol}^{-1} \)

Faraday constant, \(F = 96485 \text{ C mol}^{-1} \)

Planck constant, \(h = 6.626 \times 10^{-34} \text{ J s} \)

Speed of light in vacuum, \(c = 2.998 \times 10^8 \text{ m s}^{-1} \)

Gas constant, \(R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1} \)
\[
= 0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}
\]

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L

Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L

Conversion factors

1 atm = 760 mmHg = 101.3 kPa

0 °C = 273 K

1 L = 10^{-3} \text{ m}^3

1 Å = 10^{-10} \text{ m}

1 eV = 1.602 \times 10^{-19} \text{ J}

1 Ci = 3.70 \times 10^{10} \text{ Bq}

Useful formulas

Acids and Bases

pK_w = pH + pOH = 14

pK_w = pK_a + pK_b = 14

pH = pK_a + log([A^-] / [HA])

Kinetics

\(k = Ae^{-Ea/RT} \)

\(t_{1/2} = \ln 2 / k \)

\(\ln[A] = \ln[A]_0 - kt \)

Radioactivity

\(A = kN \)

\(\ln(N_0/N_t) = kt \)

\(t = 8033 \ln(A_0/A_t) \)

Electrochemistry

\(\Delta G^\circ = -nFE^\circ \)

\(E = E^\circ - (RT/nF) \ln Q \)

\(E^\circ = (RT/nF) \ln K \)

Moles of e^- = It/F

Colligative properties

\(\pi = cRT \)

\(p = kc \)

\(\Delta T_i = K_i m \)

\(\Delta T_b = K_b m \)

Thermodynamics & Equilibrium

\(\Delta G^\circ = \Delta H^\circ - T\Delta S^\circ \)

\(\Delta G = \Delta G^\circ + RT \ln Q \)

\(\Delta G^\circ = -RT \ln K \)

\(K_p = K_c (RT)^\Delta n \)

Quantum Chemistry

\(E = h\nu = hc/\lambda \)

\(\lambda = h/mu \)

\((P + n^2a/V^2)(V - nb) = nRT \)

Gas Laws

\(PV = nRT \)

Decimal fractions

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Prefix</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-3}</td>
<td>milli</td>
<td>m</td>
</tr>
<tr>
<td>10^{-6}</td>
<td>micro</td>
<td>\mu</td>
</tr>
<tr>
<td>10^{-9}</td>
<td>nano</td>
<td>n</td>
</tr>
<tr>
<td>10^{-12}</td>
<td>pico</td>
<td>p</td>
</tr>
</tbody>
</table>

Decimal multiples

<table>
<thead>
<tr>
<th>Multiple</th>
<th>Prefix</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{3}</td>
<td>kilo</td>
<td>k</td>
</tr>
<tr>
<td>10^{6}</td>
<td>mega</td>
<td>M</td>
</tr>
<tr>
<td>10^{9}</td>
<td>giga</td>
<td>G</td>
</tr>
</tbody>
</table>

A periodic table is printed on the other side of this data sheet.

Atomic weights are included in the periodic table.
PERIODIC TABLE OF THE ELEMENTS

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>He</td>
<td>Li</td>
<td>Be</td>
<td>B</td>
<td>C</td>
<td>N</td>
<td>O</td>
<td>F</td>
<td>Ne</td>
<td>Na</td>
<td>Mg</td>
<td>Al</td>
<td>Si</td>
<td>P</td>
<td>S</td>
<td>Cl</td>
<td></td>
</tr>
<tr>
<td>1.008</td>
<td>4.003</td>
<td>6.941</td>
<td>9.012</td>
<td>10.81</td>
<td>12.01</td>
<td>14.01</td>
<td>16.00</td>
<td>19.00</td>
<td>20.18</td>
<td>22.99</td>
<td>24.31</td>
<td>26.98</td>
<td>28.09</td>
<td>30.97</td>
<td>32.07</td>
<td>35.45</td>
<td>39.95</td>
</tr>
<tr>
<td>He</td>
<td>Ne</td>
<td>Li</td>
<td>Be</td>
<td>B</td>
<td>C</td>
<td>N</td>
<td>O</td>
<td>F</td>
<td>Ne</td>
<td>Na</td>
<td>Mg</td>
<td>Al</td>
<td>Si</td>
<td>P</td>
<td>S</td>
<td>Cl</td>
<td></td>
</tr>
<tr>
<td>1.008</td>
<td>4.003</td>
<td>6.941</td>
<td>9.012</td>
<td>10.81</td>
<td>12.01</td>
<td>14.01</td>
<td>16.00</td>
<td>19.00</td>
<td>20.18</td>
<td>22.99</td>
<td>24.31</td>
<td>26.98</td>
<td>28.09</td>
<td>30.97</td>
<td>32.07</td>
<td>35.45</td>
<td>39.95</td>
</tr>
<tr>
<td>H</td>
<td>He</td>
<td>Li</td>
<td>Be</td>
<td>B</td>
<td>C</td>
<td>N</td>
<td>O</td>
<td>F</td>
<td>Ne</td>
<td>Na</td>
<td>Mg</td>
<td>Al</td>
<td>Si</td>
<td>P</td>
<td>S</td>
<td>Cl</td>
<td></td>
</tr>
<tr>
<td>1.008</td>
<td>4.003</td>
<td>6.941</td>
<td>9.012</td>
<td>10.81</td>
<td>12.01</td>
<td>14.01</td>
<td>16.00</td>
<td>19.00</td>
<td>20.18</td>
<td>22.99</td>
<td>24.31</td>
<td>26.98</td>
<td>28.09</td>
<td>30.97</td>
<td>32.07</td>
<td>35.45</td>
<td>39.95</td>
</tr>
</tbody>
</table>

Chemistry 1B (Pharmacy)

CHEM1612 – CHEMISTRY 1B (Pharmacy)

November 2003

89/07(b)