89/07(a)

The University of Sydney

CHEM1612 - CHEMISTRY 1B (PHARMACY)

SECOND SEMESTER EXAMINATION

CONFIDENTIAL

NOVEMBER 2003

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY NAME	SID NUMBER	
OTHER NAMES	TABLE NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 14 pages of examinable material.
- Complete the written section of the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent table.
- Each new question of the short answer section begins with a ●.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- A Periodic Table and numerical values required for any question may be found on a separate data sheet.
- Pages 8, 10, 16, 18 & 20 are for rough working only.

OFFICIAL USE ONLY

Multiple choice section

\backslash	Marks		
Page	Max	Gained	
27	42		

Short answer section

	Marks			
Page	Max	Gaine	d	Marker
9	7			
11	6			
12	6			
13	4			
14	13			
15	4			
17	9			
19	9			
Total	58			
Check	Total			

most types of radioactive than 0.1 Å. Calculate the answer in J per photon an	decay processes energy of a pho	s. γ photons ty		engths less
				1
E =	J per photon	<i>E</i> =		kJ mol ⁻¹
Why is high energy or gar	nma radiation c	alled ionising	adiation?	
What are two of the key re	esults arising fro	om a wavelike	description of matt	er?
Each of the following elec	tron configurat	ions represents	an atom in an exci	ted state.
• Each of the following elec Identify the element and w	-	-		ted state.
-	-	state electron c		ration of
Identify the element and v Electron configuration of	vrite its ground	state electron c	configuration.	ration of

2

2

• State Hund's rule and illustrate its application in the orbital box diagram of the nitrogen atom.

2003-N-3

	1 <i>s</i>	2 <i>s</i>	$2p_{\rm x}$ $2p_{\rm y}$ $2p_{\rm z}$
Ν			

• The atomic radius decreases across a period and increases down a group within the periodic table. Explain these observations.

- A molecule with formula of type AX₃ is found to be polar. Which molecular shapes are possible for this molecule?
- 2

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

Marks • The structures of dopamine and mescaline are given below. 6 H. ·Η H Η a Η H Η Η Н Η Η Η Η Η Η H -H H Ĥ С H Η dopamine Η mescaline Ĥ Dopamine is involved in the transmission of nerve impulses in the brain. Complete the Lewis structure for dopamine by including all lone pair electrons. How many π electrons are there in dopamine? Predict the bond angles at the points labelled *a*, *b*, and *c* in dopamine. а b С Mescaline is an hallucinogenic compound found in the peyote cactus. Suggest a reason for the ability mescaline to disrupt nerve impulses. Which compound, dopamine or mescaline, has the higher solubility in water? Give reasons for your answer.

• Strong hydrogen bonds, –B:H–A–, are typically found when both A and B are N, O, or F atoms. Give reasons for this observation.	Marks 2
• For each of the following pairs, which substance has the lower boiling point? Give reasons for your answer.	2
(a) MgCl ₂ and PCl ₃	
(b) CH ₃ OH and CH ₃ CH ₂ OH	

• Complete the followin material where request	g table. Make sure you give the ted.	name of the product or starting	Marks 13
STARTING MATERIAL	REAGENTS/CONDITIONS	CONSTITUTIONAL FORMULA(S) OF MAJOR ORGANIC PRODUCT(S)	
		ОН	
		Name:	
COOH O O	OH^{\ominus} / $\mathrm{H_2O}$ / heat		
		NO ₂	
Name:	HBr / CCl ₄ (solvent)		
CH ₂ OH		CH ₂ Br	
S S	H^{\oplus} / $\mathrm{H}_{2}\mathrm{O}$ / heat		
CH ₃ CH ₂ CH ₂ Br	(CH ₃ CH ₂) ₃ N		
CH ₃ CH ₂ CH ₂ CH ₂ CHO Name:	1. NaBH₄ 2. H [⊕] / H ₂ O		

• The stucture of D-glucose is shown below. Draw the Fischer projection of L-glucose 9 in the space provided.

	СНО	
	Н———ОН	
	НО———Н	
D-glucose	Н——ОН	
	Н——ОН	
	CH ₂ OH	

HO L-glucose —OH —H

CH ₂ OH	
D-glucose is in equilibrium with two cyclic projection of these two cyclic forms.	c pyranose forms. Give the Haworth

Give the products obtained when D-glucose is treated with the following reagents.

methanol / H ⁺	$\left[Ag(NH_3)_2\right]^+ / OH^-$ solution	1. NaBH ₄	2. dilute acid

Draw the Haworth structure of a non-reducing disaccharide, which, on acid hydrolysis, yields D-glucose as the only product.

Marks

Marks • The structure of the naturally occurring tetrapeptide His-Phe-Ala-Glu, A, is shown 9 below as the zwitterion. Ĥ $\operatorname{CO}_2^{\ominus}$ Α Η H₃N N | H COOH Ö Ö Ph Give the product(s) obtained when **A** is treated with cold 1 M NaOH. Vigorous acid hydrolysis of A gives four products. Give the structures of these four products in their correct ionic states as Fischer projections. The heterocycle present in the sidechain of histidine is imidazole, whose structure is shown on the right. Give the structure of a tautomer of imidazole and state, giving reasons, whether your tautomer is aromatic. What is the major species present when histidine is dissolved in water at pH 12. The pK_a values of histidine are 1.82 (-COOH), 9.17 (-NH₃^{\oplus}) and 6.04 (sidechain).

CHEM1612 - CHEMISTRY 1B (PHARMACY)

DATA SHEET

<i>Physical constants</i> Avogadro constant, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$	<i>Conversion factors</i> 1 atm = 760 mmHg = 101.3 kPa
Faraday constant, $F = 96485 \text{ C mol}^{-1}$	0 °C = 273 K
Planck constant, $h = 6.626 \times 10^{-34} \text{ J s}$	$1 L = 10^{-3} m^3$
Speed of light in vacuum, $c = 2.998 \times 10^8 \text{ m s}^{-1}$	$1 \text{ Å} = 10^{-10} \text{ m}$
Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$	$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$
$= 0.08206 \text{ L atm } \text{K}^{-1} \text{ mol}^{-1}$	$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$
Volume of 1 mole of ideal gas at 1 atm and 25 $^{\circ}$ C = 24.5 L	

Volume of 1 mole of ideal gas at 1 atm and 0 $^{\circ}\text{C}$ = 22.4 L

Useful formulas			
Acids and Bases	Kinetics	Radioactivity	
$pK_w = pH + pOH = 14$	$k = A e^{-Ea/RT}$	A = kN	
$pK_{\rm w} = pK_{\rm a} + pK_{\rm b} = 14$	$t_{\frac{1}{2}} = \ln 2/k$	$\ln(N_0/N_t) = kt$	
$pH = pK_a + \log\{[A^-] / [HA]\}$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_{\rm o} - kt$	$t = 8033 \ln(A_0/A_t)$	

Electrochemistry	Colligative properties	Thermodynamics & Equilibrium					
$\Delta G^{\circ} = -nFE^{\circ}$	$\pi = cRT$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$					
$E = E^{\circ} - (RT/nF) \ln Q$	$\mathbf{p} = k\mathbf{c}$	$\Delta G = \Delta G^{\circ} + RT \ln Q$					
$E^{\circ} = (RT/nF) \ln K$	$\Delta T_{\rm f} = K_{\rm f} m$	$\Delta G^{\circ} = -RT \ln K$					
Moles of $e^- = It/F$	$\Delta T_{\rm b} = K_{\rm b} m$	$K_{\rm p} = K_{\rm c} \ (RT)^{\Delta \rm n}$					

Quantum Chemistry	Gas Laws
$E = h v = h c / \lambda$	PV = nRT
$\lambda = h/mu$	$(P + n^2 a/V^2)(V - nb) = nRT$

Deci	mal fract	ions	Decimal multiples							
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol					
10^{-3}	milli	m	10^{3}	kilo	k					
10^{-6}	micro	μ	10^{6}	mega	М					
10^{-9}	nano	n	10^{9}	giga	G					
10^{-12}	pico	р								

A periodic table is printed on the other side of this data sheet. Atomic weights are included in the periodic table.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	1 нуdrogen Н 1.008																	2 нелим Не 4.003
	3 LITHIUM Li	4 BERYLLIUM Be											5 boron B	6 carbon C	7 Nitrogen N	8 oxygen O	9 ^{fluorine} F	10 _{меом} Ne
	L 1 6.941	9.012											10.81	12.01	14.01	16.00	F 19.00	20.18
	11	12	-										13	14	15	16	17	18
	sodium Na	MAGNESIUM Mg											ALUMINIUM	silicon Si	PHOSPHORUS P	SULFUR S	CHLORINE Cl	ARGON Ar
	22.99	24.31											26.98	28.09	30.97	32.07	35.45	39.95
	19 potassium	20 CALCIUM	21 scandium	22	23	24	25 manganese	26 IRON	27	28	29 COPPER	30	31	32 germanium	33 ARSENIC	34	35	36
	K	Ca	SCANDIUM	TITANIUM Ti	M VANADIUM	CHROMIUM Cr	MANGANESE	Fe	COBALT CO	NICKEL Ni	COPPER	ZINC Zn	GALLIUM Ga	GERMANIUM	ARSENIC	selenium Se	BROMINE Br	KRYPTON Kr
	39.10	40.08	44.96	47.88	3 50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.59	74.92	78.96	79.90	83.80
	37 RUBIDIUM	38 strontium	39 yttrium	40 zirconiu	41 ми мовии	42 MOLYBDENUM	43 TECHNETIUM	44 ruthenium	45 RHODIUM	46 palladium	47 SILVER	48 cadmium	49 INDIUM	50 TIN	51 ANTIMONY	52 TELLURIUM	53 IODINE	54 XENON
	Rb	SRONHUM	YIRIOM	ZIRCOMU	NOBION ND	MOLYBBENUM	Тс	RUHENIUM	Rhoblem	PALLADIOM	Ag	CADMICM	In	Sn	Sb	Te	I	XeNON
	85.47	87.62	88.91	91.22	2 92.91	95.94	[98.91]	101.07	102.91	106.4	107.87	112.40		118.69	121.75	127.60	126.90	131.30
	55 CAESIUM	56 barium	57-71	72 HAFNIUN	73 TANTALUM	74 TUNGSTEN	75 RHENIUM	76 озміцм	77 iridium	78 platinum	79 GOLD	80 mercury	81 THALLIUM	82	83 bismuth	84 polonium	85 astatine	86 radon
	CAESIUM	BARIUM		HAFNIU	Ta Ta	W	RHENIUM	Osmion	Ir	PLANNUM	Au	Hg	TI	Pb	BISMOTH	POLONIUM	Astatine	Rabon
	132.91	137.34		178.4		183.85	186.2	190.2	192.22	195.09	196.97	200.59		207.2	208.98	[210.0]	[210.0]	[222.0]
	87 FRANCIUM	88 radium	89-103	104 RUTHERFOR		106 seaborgium	107 bohrium	108 hassium	109 meitnerium									
	Fr	Ra		Rf		Sg	Bh	Hs	Mt									
	[223.0]	[226.0]		[261]] [262]	[266]	[262]	[265]	[266]									
				I					1	-								
		ES LANTHA		58 RIUM	59 praseodymium	60 NEODYMIUM	61 promethium	62 samarium	63 EUROPIUM	64 gadolinium	M TERBI		66 SPROSIUM	67 HOLMIUM	68 Erbium	69 THULIUM	70 ytterbium	71 LUTETIUM
1	LANTHANIDES			Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tł		Dy	Но	Er	Tm	Yb	Lu
		138.		0.12	140.91	144.24	[144.9]	150.4	151.96	157.25		93 1	62.50	164.93	167.26	168.93	173.04	174.97
		ACTINI)) DRIUM	91 protactinium	92 uranium	93 NEPTUNIUM	94 plutonium	95 Americium	96 CURIUM	97 BERKELI		98 JFORNIUM F	99 INSTEINIUM	100 Fermium	101 mendelevium	102 NOBELIUM	103 LAWRENCIUM
	ACTINIDES		с Т	ſh	Pa	U	Np	Pu	Am	Cm	Bł	s	Cf	Es	Fm	Md	No	Lr
		[227	.0] 23	2.04	[231.0]	238.03	[237.0]	[239.1]	[243.1]	[247.1]] [247	.1] [2	252.1]	252.1]	[257.1]	[256.1]	[259.1]	[260.1]

PERIODIC TABLE OF THE ELEMENTS

CHEM1612 - CHEMISTRY 1B (Pharmacy)

(q)/0/68