The University of Sydney

<u>CHEM1612 - CHEMISTRY 1B (PHARMACY)</u> <u>SECOND SEMESTER EXAMINATION</u>

CONFIDENTIAL

NOVEMBER 2004

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY	SID	
NAME	NUMBER	
OTHER	TABLE	
NAMES	NUMBER	

OFFICIAL USE ONLY

Multiple choice section

1			Marks
	Pages	Max	Gained
	2-10	36	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 19 pages of examinable material.
- Complete the examination paper in **INK**.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a •.
- Electronic calculators, including programmable calculators, may be used.
 Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Pages 14, 17, 21 and 24 are for rough working only.

Short answer section

	Marks			
Page	Max	Gaine	d	Marker
11	14			
12	5			
13	5			
15	5			
16	7			
18	7			
19	4			
20	7			
22	4			
23	6			
Total	64			

CHEM1612 2004-N-2 November 2004 89/07(a)

• Write	• Write the ground state electronic configuration of the Cl ⁻ ion.					
		rons in this ion have quant one of their quantum num				
	many elect ers $n = 3$ a	rons in this ion have quant $l = 0$?	tum			
	-	rons in the Cl ⁻ ion have qu $l = 1$, $m_l = -2$ and $m_s = +\frac{1}{2}$				
How	many valei	nce electrons in a chlorine	atom?			
• Comp	olete the fo	llowing table. NH ₃ is give	en as an exampl	e.		
Species	Central atom	Lewis structure	Hybridisation	Geometry of molecule	Polarity of molecule	
NH ₃	N	H— <u>"</u> —H	sp^3	trigonal pyramidal	polar	

Species	atom	Lewis structure	Tryondisation	of molecule	molecule
NH ₃	N	H— <u>n</u> —H	sp^3	trigonal pyramidal	polar
PCl ₅					
SO ₂					

• The three C–O bonds in the carbonate ion, CO_3^{2-} , all have the same bond length, whereas there are two different C–O bond lengths in the hydrogenearbonate ion, HCO_3^- . Explain.

3

CHEM1612 2004-N-3 November 2004 89/07(a)

•	TiO ₂ can absorb ultraviolet light. How much energy is gained by TiO ₂ when 1.00 mol of photons of ultraviolet light with a wavelength of 350 nm is absorbed?			
		Answer:	-	
_	Ethylene glycol antifreeze CaH.Oa (1.00	kg) is added to a car radiator that contains	3	
•	5.00 kg of water. What is the freezing po			
			-	

•	For the reaction $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$ at $25 ^{\circ}$ C $\Delta H^{\circ} = -198.4 \text{kJ mol}^{-1}$ and $\Delta S^{\circ} = -187.9 \text{J K}^{-1} \text{mol}^{-1}$ Show that this reaction is spontaneous at $25 ^{\circ}$ C.	Marks 5
	If the volume of the reaction system is increased at 25 °C, in which direction will the reaction move?	
	Calculate the value of the equilibrium constant, <i>K</i> , at 25 °C.	
	K =	
	Assuming ΔH° and ΔS° are independent of temperature, in which temperature range is the reaction non-spontaneous?	
	Answer:	_

• Anhydrous copper(II) sulfate is a white powder that reacts with water to give the familiar light blue crystals of copper(II) sulfate-5-water.

Marks 2

3

$$CuSO_4(s) + 5H_2O(l) \rightarrow CuSO_4 \cdot 5H_2O(s)$$

Calculate the standard enthalpy change for this reaction from the heats of solution.

Compound	$\Delta H^{\circ}_{\text{solution}} / \text{kJ mol}^{-1}$
CuSO ₄ (s)	-66.5
CuSO ₄ ·5H ₂ O(s)	+11.7

Answer:

• Using the given data, calculate ΔH° for the reaction: $H(g) + Br(g) \rightarrow HBr(g)$

Data: $H_2(g) \rightarrow 2H(g)$

$$\Delta H^{\circ} = +436 \text{ kJ mol}^{-1}$$

$$Br_2(g) \rightarrow 2Br(g)$$

$$\Delta H^{\circ} = +193 \text{ kJ mol}^{-1}$$

$$H_2(g) + Br_2(g) \rightarrow 2HBr(g)$$

$$\Delta H^{\circ} = -72 \text{ kJ mol}^{-1}$$

Answer:

CHEM1612 2004-N-6 November 2004 89/07(a)

Uric acid, $C_5H_5N_4O_3$, is a weak diprotic acid with a low solubility of 70 mg L ⁻¹ . The extremely painful inflammation known as gout occurs when crystals of uric acid are deposited in the joints. Given that the pH of a saturated solution of uric acid is 4.58, calculate the p K_{a1} of uric acid at 25 °C?				
	Answer:			
	s slightly more soluble, 8×10^{-4} g mL ⁻¹ . Calculate of sodium urate at 25 °C. Assume no hydrolysis			
of the dide for occurs.				
	Answer:			
Suggest a possible reason why the p saturated with uric acid.	pH of blood plasma remains near 7.4 even when			

• It takes 2.30 minutes to plate out all of th containing Ag ⁺ (aq), using a current of 2.0 of Ag ⁺ (aq) in solution?	e silver from 0.250 L of a solution 00 A. What was the original concentration
	Answer:
A number of bacteria can reduce the nitra unbalanced redox reaction can be written	ate ion in the presence of sulfur. A simplified as:
$S(s) + NO_3(aq) \rightarrow SO_2$	(g) + NO(g)
Balance this redox equation for acidic con	nditions.
	imber of types of isomerism. Draw a simple mers. Label your diagram with the systematic

Marks

2

• Consider the following balanced redox reaction.

 $2 In(s) \ + \ 3 MnO_2(s) \ + \ 12 H^+(aq) \ \rightarrow \ 2 In^{3+}(aq) \ + \ 3 Mn^{2+}(aq) \ + \ 6 H_2 O$

If $E^{0} = 1.568$ V, what would be the measured potential of this cell at 298 K at the following concentrations?

$$[H^{+}(aq)] = 0.25 \text{ M}; \quad [In^{3+}(aq)] = 0.20 \text{ M}; \quad [Mn^{2+}(aq)] = 0.42 \text{ M}$$

Answer:

• What is the value of the equilibrium constant for the following reaction at 298 K?

$$Cu^{2+}(aq) + Zn(s) \rightarrow Zn^{2+}(aq) + Cu(s)$$

Relevant electrode potentials can be found on the data page.

2

Answer:

CHEM1612 2004-N-9 November 2004 89/07(a)

Answer: Calculate the molar solubility of PbCl ₂ in water. K _{sp} for PbCl ₂ = 2.0 × 10 ⁻⁵ M ³ . Answer: Complete the following table. Formula Systematic name [Cr(OH ₂) ₃ Cl]Cl ₂ NH ₄ Fe(SO ₄) ₂ -6H ₂ O sodium hexachlorocobaltate(III) aluminium nitrate-9-water potassium nitrite KHSO ₄	A watch contains a rad After 50 years 25 mg originally present.	After 50 years 25 mg of the radioactive material remains. Calculate the amount			
• Calculate the molar solubility of PbCl ₂ in water. K_{sp} for PbCl ₂ = 2.0×10^{-5} M ³ . Answer: • Complete the following table. Formula Systematic name [Cr(OH ₂) ₅ Cl]Cl ₂ NH ₄ Fe(SO ₄) ₂ ·6H ₂ O sodium hexachlorocobaltate(III) aluminium nitrate-9-water potassium nitrite					
• Calculate the molar solubility of PbCl ₂ in water. K_{sp} for PbCl ₂ = 2.0×10^{-5} M ³ . Answer: • Complete the following table. Formula Systematic name [Cr(OH ₂) ₅ Cl]Cl ₂ NH ₄ Fe(SO ₄) ₂ ·6H ₂ O sodium hexachlorocobaltate(III) aluminium nitrate-9-water potassium nitrite					
• Calculate the molar solubility of PbCl ₂ in water. K_{sp} for PbCl ₂ = 2.0×10^{-5} M ³ . Answer: • Complete the following table. Formula Systematic name [Cr(OH ₂) ₅ Cl]Cl ₂ NH ₄ Fe(SO ₄) ₂ ·6H ₂ O sodium hexachlorocobaltate(III) aluminium nitrate-9-water potassium nitrite					
• Calculate the molar solubility of PbCl ₂ in water. K_{sp} for PbCl ₂ = 2.0×10^{-5} M ³ . Answer: • Complete the following table. Formula Systematic name [Cr(OH ₂) ₅ Cl]Cl ₂ NH ₄ Fe(SO ₄) ₂ ·6H ₂ O sodium hexachlorocobaltate(III) aluminium nitrate-9-water potassium nitrite					
Answer: Complete the following table. Formula Systematic name [Cr(OH ₂) ₅ Cl]Cl ₂ NH ₄ Fe(SO ₄) ₂ ·6H ₂ O sodium hexachlorocobaltate(III) aluminium nitrate-9-water potassium nitrite Answer: 3 Answer: aluminity of PbCl ₂ = 2.0 × 10 ° M³.			Answer:		
• Complete the following table. Formula Systematic name [Cr(OH ₂) ₅ Cl]Cl ₂ NH ₄ Fe(SO ₄) ₂ ·6H ₂ O sodium hexachlorocobaltate(III) aluminium nitrate-9-water potassium nitrite	• Calculate the molar so	olubility of PbCl ₂ in	water. $K_{\rm sp}$ for PbCl ₂ = 2.0×10^{-5} M ³ .	2	
• Complete the following table. Formula Systematic name [Cr(OH ₂) ₅ Cl]Cl ₂ NH ₄ Fe(SO ₄) ₂ ·6H ₂ O sodium hexachlorocobaltate(III) aluminium nitrate-9-water potassium nitrite					
• Complete the following table. Formula Systematic name [Cr(OH ₂) ₅ Cl]Cl ₂ NH ₄ Fe(SO ₄) ₂ ·6H ₂ O sodium hexachlorocobaltate(III) aluminium nitrate-9-water potassium nitrite					
• Complete the following table. Formula Systematic name [Cr(OH ₂) ₅ Cl]Cl ₂ NH ₄ Fe(SO ₄) ₂ ·6H ₂ O sodium hexachlorocobaltate(III) aluminium nitrate-9-water potassium nitrite					
• Complete the following table. Formula Systematic name [Cr(OH ₂) ₅ Cl]Cl ₂ NH ₄ Fe(SO ₄) ₂ ·6H ₂ O sodium hexachlorocobaltate(III) aluminium nitrate-9-water potassium nitrite					
Formula Systematic name [Cr(OH ₂) ₅ Cl]Cl ₂ NH ₄ Fe(SO ₄) ₂ ·6H ₂ O sodium hexachlorocobaltate(III) aluminium nitrate-9-water potassium nitrite			Answer:		
$[Cr(OH_2)_5Cl]Cl_2 \\ NH_4Fe(SO_4)_2 \cdot 6H_2O \\ sodium hexachlorocobaltate(III) \\ aluminium nitrate-9-water \\ potassium nitrite$	Complete the following	ng table.		3	
NH ₄ Fe(SO ₄) ₂ ·6H ₂ O sodium hexachlorocobaltate(III) aluminium nitrate-9-water potassium nitrite	Formula	Systematic	name		
sodium hexachlorocobaltate(III) aluminium nitrate-9-water potassium nitrite	[Cr(OH ₂) ₅ Cl]Cl ₂				
aluminium nitrate-9-water potassium nitrite	NH ₄ Fe(SO ₄) ₂ ·6H ₂ O				
potassium nitrite		sodium hexachloro	ocobaltate(III)		
		aluminium nitrate-	-9-water		
KHSO ₄		potassium nitrite			
	KHSO ₄				

Consider the results of the following set of experiments studying the rate of the chemical reaction:
 2A + B → 3C + D

8	11	•]	K	
	4			

Experiment #	initial [A] / M	initial [B] / M	Rate / M hr ⁻¹
1	0.240	0.120	2.00
2	0.120	0.120	0.500
3	0.240	0.060	1.00

Write the rate law expression.

Rate =

Calculate the rate constant, k, with units.

k =

What is the rate of the reaction when [A] is 0.0140 M and [B] is 1.35 M?

Rate =

• Consider the following two compounds.

(I) Martius Yellow

(II) Naphthol Yellow S

On ingestion of compound (I), death from liver failure occurs very quickly. In contrast, compound (II) is completely non-toxic and is used as an artificial colouring agent. Explain, using the model of biological membranes, why (I) is highly toxic.

• Give three examples of colloids in biological systems, and complete the following table. Paint is given as an example of a synthetic (non-biological) system.

Name of colloid	Discrete phase	Continuous phase
paint	synthetic polymer	water

3

CHEM1612 - CHEMISTRY 1B (PHARMACY)

DATA SHEET

Physical constants

Avogadro constant, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

Faraday constant, $F = 96485 \text{ C mol}^{-1}$

Planck constant, $h = 6.626 \times 10^{-34} \text{ J s}$

Speed of light in vacuum, $c = 2.998 \times 10^8 \text{ m s}^{-1}$

Rydberg constant, $E_R = 2.18 \times 10^{-18} \text{ J}$

Boltzmann constant, $k_B = 1.381 \times 10^{-23} \text{ J K}^{-1}$

Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$

 $= 0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 $^{\circ}$ C = 24.5 L

Volume of 1 mole of ideal gas at 1 atm and $0 \, ^{\circ}\text{C} = 22.4 \, \text{L}$

Density of water at 298 K = 0.997 g cm⁻³

Conversion factors

$$1 \text{ atm} = 760 \text{ mmHg} = 101.3 \text{ kPa}$$

$$0 \, ^{\circ}\text{C} = 273 \, \text{K}$$

$$1 L = 10^{-3} \text{ m}^3$$

$$1 \text{ Å} = 10^{-10} \text{ m}$$

$$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$$

$$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$$

$$1 \text{ Hz} = 1 \text{ s}^{-1}$$

Deci	mal fract	ions	Decir	nal multi	iples
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol
10^{-3}	milli	m	10^3	kilo	k
10^{-6}	micro	μ	10^{6}	mega	M
10^{-9}	nano	n	10^{9}	giga	G
10^{-12}	pico	p			

CHEM1612 - CHEMISTRY 1B (PHARMACY)

Standard Reduction Potentials, $E^{\,o}$

Reaction	E° / V
$Co^{3+}(aq) + e^- \rightarrow Co^{2+}(aq)$	+1.82
$Ce^{4+}(aq) + e^{-} \rightarrow Ce^{3+}(aq)$	+1.72
$Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$	+0.80
$Fe^{3+}(aq) + e^- \rightarrow Fe^{2+}(aq)$	+0.77
$Cu^{+}(aq) + e^{-} \rightarrow Cu(s)$	+0.53
$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2H^+(aq) + 2e^- \rightarrow H_2(g)$	0 (by definition)
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$	-0.04
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \to \operatorname{Sn}(s)$	-0.14
$Ni^{2+}(aq) + 2e^- \rightarrow Ni(s)$	-0.24
$Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$	-0.44
$Cr^{3+}(aq) + 3e^- \rightarrow Cr(s)$	-0.74
$Zn^{2+}(aq) + 2e^- \rightarrow Zn(s)$	-0.76
$2H_2O~+~2e^- \rightarrow~H_2(g)~+~2OH^-(aq)$	-0.83
$Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$	-0.89
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.68
$Mg^{2+}(aq) + 2e^- \rightarrow Mg(s)$	-2.36
$Na^{+}(aq) + e^{-} \rightarrow Na(s)$	-2.71

CHEM1612 - CHEMISTRY 1B (PHARMACY)

Useful Formulas

Quantum Chemistry

$$E = hv = hc/\lambda$$

$$\lambda = h/mu$$

$$4.5k_{\rm B}T = hc/\lambda$$

$$E = Z^{2}E_{\rm R}(1/n^{2})$$

Kinetics

$$k = Ae^{-Ea/RT}$$

$$t_{1/2} = \ln 2/k$$

$$\ln[A] = \ln[A]_{o} - kt$$

Gas Laws

$$PV = nRT$$
$$(P + n^{2}a/V^{2})(V - nb) = nRT$$

Colligative Properties

$$\pi = cRT$$
 $p = kc$
 $P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$
 $\Delta T_{\text{f}} = K_{\text{f}} m$
 $\Delta T_{\text{b}} = K_{\text{b}} m$

Polymers

$$R_{\rm g} = \sqrt{\frac{nl_0^2}{6}}$$

Thermodynamics & Equilibrium

$$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$$

$$\Delta G = \Delta G^{\circ} + RT \ln Q$$

$$\Delta G^{\circ} = -RT \ln K$$

$$K_{p} = K_{c} (RT)^{\Delta n}$$

Radioactivity

$$A = \lambda N$$

$$\ln(N_0/N_t) = \lambda t$$
¹⁴C age = 8033 ln(A₀/A_t)

Acids and Bases

$$pK_w = pH + pOH = 14.00$$

 $pK_w = pK_a + pK_b = 14.00$
 $pH = pK_a + \log\{[A^-]/[HA]\}$

Electrochemistry

$$\Delta G^{\circ} = -nFE^{\circ}$$

$$Moles of e^{-} = It/F$$

$$E = E^{\circ} - (RT/nF) \ln Q$$

$$= E^{\circ} - (RT/nF) \times 2.303 \log Q$$

$$E^{\circ} = (RT/nF) \ln K$$

$$= (RT/nF) \times 2.303 \log K$$

$$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$$

Mathematics

If
$$ax^2 + bx + c = 0$$
, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
 $\ln x = 2.303 \log x$

PERIODIC TABLE OF THE ELEMENTS

S	2																	
H 1.008 3																		1
1.008 3	HELIUM																	
Section Sect	He																	H
REPULITION REP	4.003															_		1.008
Li Be 6.941 9.012	10	9	8	7	6	5											4	3
10.81 12.01 14.01 16.00 19.00	NEON																	
11	Ne	F	O	N	C	В											Be	Li
Na Ng 22.99 24.31 22 23 24 25 26 27 28 29 20.00 21 20	20.18	19.00	16.00	14.01	12.01	10.81											9.012	6.941
Na Mg 22.99 24.31 22 23 24 25 26 27 28 29 30 31 32 33 34 35 35 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 85.47 87.62 88.91 91.22 92.91 95.94 [98.91] 101.07 102.91 106.4 107.87 112.40 114.82 118.69 121.75 127.60 126.90 12	18	17	16	15	14	13											12	11
22.99 24.31 20	ARGON																	
22.99 24.31 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35	Ar	Cl	S	P	Si	Al											Mg	Na
POTASSIUM CALCIUM SCANDIUM CALCIUM SCANDIUM CALCIUM	39.95	35.45	32.07	30.97	28.09	26.98												22.99
K	36	35	34	33		31	30	29	28	27	26	25	24	23	22	21	20	19
39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.93 58.69 63.55 65.39 69.72 72.59 74.92 78.96 79.90	KRYPTON																	
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 Rubidium Strontium St	Kr	Br	Se	As	Ge	Ga	Zn	Cu	Ni	Co	Fe	Mn	Cr	V	Ti	Sc	Ca	K
RUBIDIUM STRONTIUM YTTRIUM ZIRCONIUM NIOBIUM MOLYBDENUM TECHNETIUM RUHDIUM RHODIUM RHODIUM SILVER CADMIUM INDIUM TIN ANTIMONY TELLURIUM IODINE TELLURIUM IODINE	83.80	79.90	78.96	74.92	72.59	69.72	65.39	63.55	58.69	58.93	55.85	54.94	52.00	50.94	47.88	44.96	40.08	39.10
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I 85.47 87.62 88.91 91.22 92.91 95.94 [98.91] 101.07 102.91 106.4 107.87 112.40 114.82 118.69 121.75 127.60 126.90 55 56 57-71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 CABSIUM BARIUM BARIUM TANTALUM TUNGSTEN RHENIUM OSMIUM IRIDIUM PLATINUM GOLD MERCURY THALLUM LEAD BISMUTH POLONIUM ASTATINE	54	53	52	51	50	49	48	47	46	45	44	43	42	41	40	39	38	37
85.47 87.62 88.91 91.22 92.91 95.94 [98.91] 101.07 102.91 106.4 107.87 112.40 114.82 118.69 121.75 127.60 126.90	XENON																	
55 56 57-71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 STATINE	Xe		Te	Sb	Sn	In	Cd	Ag	Pd	Rh		Tc	Mo	Nb	Zr	Y	Sr	Rb
CAESIUM BARIUM HAFNIUM TANTALUM TUNGSTEN RHENIUM OSMIUM IRIDIUM PLATINUM GOLD MERCURY THALLIUM LEAD BISMUTH POLONIUM ASTATINE	131.30											_				88.91		
	86				82			79	78	77	76	75				57-71	56	
	RADON																	
	Rn	At	Po	Bi	Pb	Tl	Hg	Au	Pt	Ir	Os	Re	\mathbf{W}	Ta	Hf		Ba	Cs
	[222.0]	[210.0]	[210.0]	208.98	207.2	204.37	200.59	196.97	195.09	192.22	190.2		183.85	180.95				
87 88 89-103 104 105 106 107 108 109										109	108	107	106	105	104	89-103	88	87
FRANCIUM RADIUM RUTHERFORDIUM DUBNIUM SEABORGIUM BOHRIUM HASSIUM MEITNERIUM															1			
Fr Ra Rf Db Sg Bh Hs Mt											Hs	Bh	Sg	Db	Rf			
[223.0] [226.0] [261] [262] [266] [262] [265] [266]										[266]	[265]	[262]		[262]	[261]		[226.0]	[223.0]

LANTHANIDES	57	58 CERIUM	59 praseodymium	60 NEODYMIUM	61 PROMETHIUM	62 Samarium	63 EUROPIUM	64 GADOLINIUM	65 TERBIUM	66 Dysprosium	67	68 ERBIUM	69 THULIUM	70 YTTERBIUM	71 LUTETIUM
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	138.91	140.12	140.91	144.24	[144.9]	150.4	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
ACTINIDES	ACTINIUM	THORIUM	PROTACTINIUM	URANIUM	NEPTUNIUM	PLUTONIUM	AMERICIUM	CURIUM	BERKELLIUM	CALIFORNIUM	EINSTEINIUM	FERMIUM	MENDELEVIUM	NOBELIUM	LAWRENCIUM
	Ac	Th	Pa	\mathbf{U}	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	[227.0]	232.04	[231.0]	238.03	[237.0]	[239.1]	[243.1]	[247.1]	[247.1]	[252.1]	[252.1]	[257.1]	[256.1]	[259.1]	[260.1]