89/07(a)

NOVEMBER 2005

The University of Sydney <u>CHEM1612 - CHEMISTRY 1B (PHARMACY)</u>

SECOND SEMESTER EXAMINATION

CONFIDENTIAL

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY NAME	SID NUMBER	
OTHER NAMES	TABLE NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 20 pages of examinable material.
- Complete the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a ●.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Pages 17, 19 and 24 are for rough working only.

OFFICIAL USE ONLY

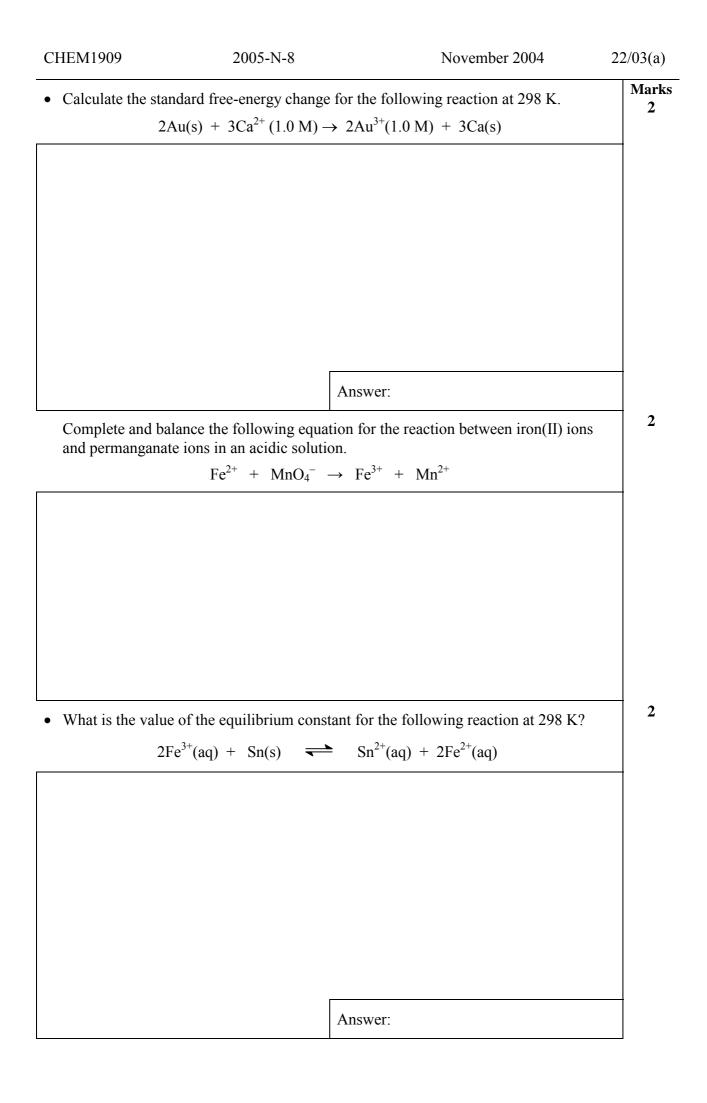
Multiple choice section

		Marks
Pages	Max	Gained
2-11	42	

Short answer section

	Marks			
Page	Max	Gaine	d	Marker
12	10			
13	5			
14	6			
15	6			
16	6			
18	6			
20	6			
21	6			
22	4			
23	3			
Total	58			

		owing table. H ₂ O is			Dolority of	4
Species	Central atom	Number of nonbonding pairs on central atom	Hybridisation of central atom	Geometry of molecule	Polarity of molecule	-
H ₂ O	О	2	sp ³	bent	polar	
НСООН	С					
HCN	С					
$3.03 \times$	ergy different different 10^{-19} J. W 3 to the <i>n</i>	ence between the <i>n</i> = 'hat is the wavelength = 2 state?	= 3 state and the n = h of light emitted v	= 2 state in hydro when an electron	gen is moves from	2
			Answer:			
• Explair	the differ	ence between the ele	ectron affinity and	electronegativity	of an atom.	2
covaler		antum theory of the etween atoms have lo				2
						1
						1


• A mixture of 0.500 mol of NO ₂ (g) and 0.500 mol of N ₂ O ₄ (g) is allowed to reach equilibrium in a 10.0 L vessel maintained at 298 K. The equilibrium is described by the equation below. $\Delta H^{\circ} = -15 \text{ kJ mol}^{-1}$ for the forward reaction.	Marks 5
$2NO_2(g) \implies N_2O_4(g) \qquad K_c = 1.2 \times 10^2 \mathrm{M}^{-1}$	
Show that the system is at equilibrium when the concentration of $NO_2(g)$ is 0.023 M.	
Discuss the effect on increases in terms are two of constant we have a would have on the	
Discuss the effect an increase in temperature, at constant volume, would have on the concentration of $NO_2(g)$.	
State with a brief reason whether the concentration of $NO_2(g)$ is increased, decreased, or unchanged when argon gas (0.2 mol) is injected while the temperature and volume remain constant.	

• The final step in the industrial production of urea, (NH ₂) ₂ CO, is:	Marks 6			
$CO_2(g) + 2NH_3(g) \rightarrow H_2O(g) + (NH_2)_2CO(s)$ $\Delta H^\circ = -90.1 \text{ kJ mol}^{-1}$				
Using the following data, calculate the standard enthalpy of formation of solid urea.				
$4NH_3(g) + 3O_2(g) \rightarrow 6H_2O(g) + 2N_2(g)$ $\Delta H^\circ = -1267.2 \text{ kJ mol}^{-1}$				
$C(s) + O_2(g) \rightarrow CO_2(g)$ $\Delta H^\circ = -393.5 \text{ kJ mol}^{-1}$				
$2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$ $\Delta H^\circ = -483.6 \text{ kJ mol}^{-1}$				
$\Delta H^{\circ}{}_{\rm f} =$				
The formation of urea in the industrial process is only spontaneous below 821 °C. What is the value of the entropy change ΔS° (in J K ⁻¹ mol ⁻¹) for the reaction?				
	1			
$\Delta S^{\circ} =$	_			
Rationalise the sign of ΔS° in terms of the physical states of the reactants and products.				
	1			

• A key step in the metabolism of glucose glucose-6-phosphate (G6P) to fructose-6-		Marks 4
G6P =	⊢ F6P	
At 298 K, the equilibrium constant for th 298 K.	the isomerisation is 0.510. Calculate ΔG° at	
	Answer:	_
Calculate ΔG at 298 K when the [F6P] /	[G6P] ratio = 10.	_
		_
	Answer:	
In which direction will the reaction shift	in order to establish equilibrium? Why?	
copper is 0.39 J $g^{-1} K^{-1}$. If the same amo	8 J g^{-1} K ⁻¹ and the specific heat capacity of ount of energy were applied to a 1.0 mol at 25 °C, which substance would get hotter?	2
	Answer:	
		1

	noprotic acid, acetylsalicylic acid (HC ₉ H ₇ O ₄) /hat is the pH of a solution obtained when a ic acid is dissolved in 125 mL of water?	3
	Answer:	2
	de ion in water involves the appearance of a L of $AgNO_3$ (0.03 M) to 100 mL of the water tion of Cl^- detectable by this method?	
	Answer:	-
The fission of U-235 is initiated by the all results in the formation of I-137, two neu other isotope?		1

 Oral rehydration therapy (ORT) is a simple low-cost treatment that replaces fluid and electrolytes lost by sufferers of diarrhoea. To make the solution for ORT, 3.5 g NaCl, 2.9 g sodium citrate (which contains 1 citrate³⁻ and 3 Na⁺ ions and has a molar mass of 258 g mol⁻¹), 1.5 g KCl and 20.0 g glucose (C₆H₁₂O₆) are dissolved in water to make 1.0 L of solution. What is the osmotic pressure (in mmHg) of this solution at body temperature (37 °C)? 	Marks 4
Answer:	
This pressure is about the same as the osmotic pressure of blood. The calorie content of the solution can be increased by adding either more glucose or a polymer of glucose. Which would be preferable? Give a brief reason.	
 Draw <u>all</u> of the geometric isomers for the complex ion [CoI₂(NH₃)₄]⁺. Label each isomer with its systematic name. 	2

• If a medical proceed to be able to use it	dure calls for 1.0 mg of exactly one week later	¹²⁸ Ba, how much isotope would be required ? The half life of ¹²⁸ Ba is 2.43 days.	Mar 2
			1
		Answer:	1
		0.0040 M BaCl ₂ is added to 600 mL of p for BaSO ₄ = 1.1×10^{-10} M ² .	2
		·	-
		Г	_
		Answer:	
Complete the follo	owing table.		2
Formula	Systematic	name	
$Pt(NH_3)_4]Cl_2$			
NaH ₂ PO ₄			
	lead(II) phosphate		
	magnesium hydrox	xide-2-water]

CHEM1909

2005-N-9

November 2004

22/03(a)

Marks

4

• Consider the results of the following set of experiments studying the rate of the reaction of nitric oxide with hydrogen at 1280 °C.

 $2NO(g) + 2H_2(g) \rightarrow N_2(g) + 2H_2O(g)$ Initial Rate / M s⁻¹ Experiment # [NO] / M $[H_2]/M$ 2.0×10^{-3} 1.3×10^{-5} 5.0×10^{-3} 1 2.0×10^{-3} 1.0×10^{-2} $5.2 imes 10^{-5}$ 2 1.0×10^{-2} 4.0×10^{-3} 1.0×10^{-4} 3

Write the rate law expression.

Rate =

Calculate the rate constant, *k*. Include units in your answer.

k =

What is the rate of the reaction when [NO] is 1.2×10^{-2} M and [H₂] is 6.0×10^{-3} M?

Rate =

Marks

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

CHEM1612 - CHEMISTRY 1B (PHARMACY)

DATA SHEET

 $Physical \ constants$ Avogadro constant, $N_{\rm A} = 6.022 \times 10^{23} \ {\rm mol}^{-1}$ Faraday constant, $F = 96485 \ {\rm C} \ {\rm mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \ {\rm J} \ {\rm s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \ {\rm m} \ {\rm s}^{-1}$ Rydberg constant, $E_{\rm R} = 2.18 \times 10^{-18} \ {\rm J}$ Boltzmann constant, $k_{\rm B} = 1.381 \times 10^{-23} \ {\rm J} \ {\rm K}^{-1}$ Gas constant, $R = 8.314 \ {\rm J} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ $= 0.08206 \ {\rm L} \ {\rm atm} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \ {\rm C}$ Mass of electron, $m_{\rm p} = 1.6726 \times 10^{-27} \ {\rm kg}$ Mass of neutron, $m_{\rm n} = 1.6749 \times 10^{-27} \ {\rm kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors 1 atm = 760 mmHg = 101.3 kPa 0 °C = 273 K 1 L = 10^{-3} m³ 1 Å = 10^{-10} m 1 eV = 1.602×10^{-19} J 1 Ci = 3.70×10^{10} Bq 1 Hz = 1 s⁻¹

Deci	mal fract	ions	
Fraction	Prefix	Symbol	Mu
10^{-3}	milli	m	1
10^{-6}	micro	μ	1
10^{-9}	nano	n	1
10^{-12}	pico	р	

Decimal multiples

Multiple	Prefix	Symbol
10^{3}	kilo	k
10^{6}	mega	Μ
10 ⁹	giga	G

CHEM1612 - CHEMISTRY 1B (PHARMACY)

Standard Reduction	Potentials, E°
---------------------------	----------------

Reaction	E° / V			
$\mathrm{Co}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})$	+1.82			
$Ce^{4+}(aq) + e^- \rightarrow Ce^{3+}(aq)$	+1.72			
$\operatorname{Au}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Au}(s)$	+1.50			
$Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$	+1.36			
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23			
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96			
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92			
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80			
$\operatorname{Fe}^{3+}(\operatorname{aq}) + \operatorname{e}^{-} \rightarrow \operatorname{Fe}^{2+}(\operatorname{aq})$	+0.77			
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53			
$\mathrm{Cu}^{2+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$	+0.34			
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15			
$2\mathrm{H}^{+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{g})$	0 (by definition)			
$Fe^{3+}(aq) + 3e^- \rightarrow Fe(s)$	-0.04			
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13			
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14			
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.24			
$Fe^{2+}(aq) + 2e^- \rightarrow Fe(s)$	-0.44			
$Cr^{3+}(aq) + 3e^- \rightarrow Cr(s)$	-0.74			
$\operatorname{Zn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Zn}(s)$	-0.76			
$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83			
$Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$	-0.89			
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.68			
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2.36			
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71			
$Ca^{2+}(aq) + 2e^{-} \rightarrow Ca(s)$	-2.87			
$\text{Li}^+(\text{aq}) + e^- \rightarrow \text{Li}(s)$	-3.04			

CHEM1612 - CHEMISTRY 1B (PHARMACY)

Usejui jormulas								
Quantum Chemistry	Radioactivity							
$E = hv = hc/\lambda$	$t_{1/2} = \ln 2/\lambda$							
$\lambda = h/mv$	$A = \lambda N$							
$4.5k_{\rm B}T = hc/\lambda$	$\ln(N_0/N_t) = \lambda t$							
$E = Z^2 E_{\rm R}(1/n^2)$	14 C age = 8033 ln(A_0/A_t)							
$\Delta x \cdot \Delta(mv) \ge h/4\pi$								
Acids and Bases	Gas Laws							
$pK_{\rm w} = pH + pOH = 14.00$	PV = nRT							
$\mathbf{p}K_{\mathrm{w}} = \mathbf{p}K_{\mathrm{a}} + \mathbf{p}K_{\mathrm{b}} = 14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$							
$pH = pK_a + \log\{[A^-] / [HA]\}$								
Colligative properties	Kinetics							
$\pi = cRT$	$t_{1/2} = \ln 2/k$							
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$k = A e^{-E_{a}/RT}$							
$\mathbf{p} = k\mathbf{c}$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_{\rm o} - kt$							
$\Delta T_{\rm f} = K_{\rm f} m$	$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$							
$\Delta T_{\rm b} = K_{\rm b} m$	$k_1 = R T_1 T_2$							
Electrochemistry	Thermodynamics & Equilibrium							
$\Delta G^{\circ} = -nFE^{\circ}$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$							
Moles of $e^- = It/F$	$\Delta G = \Delta G^{\circ} + RT \ln Q$							
$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$	$\Delta G^{\circ} = -RT \ln K$							
$= E^{\circ} - (RT/nF) \times \ln Q$	$K_{\rm p} = K_{\rm c} \ (RT)^{\Delta n}$							
$E^{\circ} = (RT/nF) \times 2.303 \log K$								
$= (RT/nF) \times \ln K$								
$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$								
Polymers	Mathematics							
$R_{\rm g} = \sqrt{\frac{n l_0^2}{6}}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$							
	$\ln x = 2.303 \log x$							

Useful formulas

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 нудгоден Н 1.008																	2 нелим Не 4.003
3	4											5	6	7	8	9	10
LITHIUM	BERYLLIUM Be											BORON B	CARBON C	NITROGEN N	OXYGEN O	FLUORINE F	NEON Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
SODIUM	MAGNESIUM											ALUMINIUM	silicon Si	PHOSPHORUS P	SULFUR	CHLORINE	ARGON
Na 22.99	Mg 24.31											Al 26.98	SI 28.09	P 30.97	S 32.07	Cl 35.45	Ar 39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
POTASSIUM	CALCIUM	SCANDIUM	TITANIUM	VANADIUM	CHROMIUM	MANGANESE	IRON	COBALT	NICKEL	COPPER	ZINC	GALLIUM	GERMANIUM	ARSENIC	SELENIUM	BROMINE	KRYPTON
K 39.10	Ca 40.08	Sc 44.96	Ti 47.88	V 50.94	Cr 52.00	Mn 54.94	Fe 55.85	Co 58.93	Ni 58.69	Cu 63.55	Zn 65.39	Ga 69.72	Ge 72.59	As 74.92	Se 78.96	Br 79.90	Kr 83.80
39.10	38	39	47.88	41	42	43	44	45	46	47	48	49	50	51	52	53	54
RUBIDIUM	STRONTIUM	YTTRIUM	ZIRCONIUM	I NIOBIUM	MOLYBDENUM	TECHNETIUM	RUTHENIUM	RHODIUM	PALLADIUM	SILVER	CADMIUM	INDIUM	TIN	ANTIMONY	TELLURIUM	IODINE	XENON
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98.91]	101.07	102.91	106.4	107.87	112.40	114.82	118.69	121.75	127.60	126.90	131.30
55 caesium	56 barium	57-71	72 hafnium	73 tantalum	74 TUNGSTEN	75 RHENIUM	76 _{озміим}	77 iridium	78 platinum	79 gold	80 mercury	81 THALLIUM	82 LEAD	83 bismuth	84 polonium	85 astatine	86 RADON
Cs	Ba		Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.91	137.34		178.49		183.85	186.2	190.2	192.22	195.09	196.97	200.59	204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
87 FRANCIUM	88 radium	89-103	104 RUTHERFORD	105 IUM DUBNIUM	106 seaborgium	107 BOHRIUM	108 hassium	109 meitnerium									
FRANCIUM	Rahom		RUTHERFORD	DOBNION Db	SEABORGIUM	Bh	HASSIEM	METNERIUM									
[223.0]	[226.0]		[261]	[262]	[266]	[262]	[265]	[266]									
	57		58	59	60	61	62	63	64	65		66	67	68	69	70	71
LANTHANID	DES LANTHA		ce	PRASEODYMIUM Pr	NEODYMIUM Nd	PROMETHIUM Pm	samarium Sm	EUROPIUM Eu	GADOLINIU GAD	m terbi			olmium Ho	ERBIUM Er	THULIUM Tm	ytterbium Yb	LUTETIUM
	138.		0.12	140.91	144.24	[144.9]	150.4	151.96	157.25				64.93	167.26	168.93	173.04	174.97
	89		00	91	92	93	94	95	96	97		98	99	100	101	102	103
ACTINIDE				PROTACTINIUM Do	URANIUM	NEPTUNIUM	PLUTONIUM	AMERICIUM		BERKEL				FERMIUM	MENDELEVIUM	NOBELIUM	LAWRENCIUM
	A [227		. 1 2.04	Pa [231.0]	U 238.03	Np [237.0]	Pu [239.1]	Am [243.1]	Cm [247.1	Bl] [247			Es 252.1]	Fm [257.1]	Md [256.1]	No [259.1]	Lr [260.1]
		.01 23.	L.UT	[201.0]	230.03	[237.0]	[237.1]	[475.1]	L ² 7/.1	J [24/	.1 [2			[20/.1]	[200.1]	[237.1]	[200.1]

PERIODIC TABLE OF THE ELEMENTS