22/08(a) The University of Sydney

<u>CHEMISTRY 1A (ADVANCED) - CHEM1901</u> CHEMISTRY 1A (SPECIAL STUDIES PROGRAM) - CHEM1903

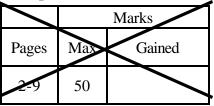
FIRST SEMESTER EXAMINATION

JUNE 2002

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

CONFIDENTIAL


FAMILY	S	SID	
NAME	NUN	MBER	
OTHER	ТА	BLE	
NAMES	NUN	MBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 16 pages of examinable material.
- Complete the written section of the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a
 .
- Electronic calculators, including programmable calculators, may be used.
 Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question and a Periodic Table may be found on a separate data sheet.
- Pages 10, 15 & 20 are for rough working only.

OFFICIAL USE ONLY

Multiple choice section

Short answer section

		Marks				
Page	Max	Gained		Max Gained		Marker
11	6					
12	4					
13	7					
14	6					
16	6					
17	8					
18	7					
19	6					
Total	50					

Check Total		
-------------	--	--

Copper(I) is oxidised to copper(II) in the follo	wing reaction.	Mar s
$Cu_2O(s) \ + \ {}^{1\!\!}/_2O_2(g) \ \rightarrow \ 2CuO(s)$	$\Delta H^{\circ} = -146 \text{ kJ mol}^{-1}$	2
Given that $\Delta H_{\rm f}^{\circ}$ of Cu ₂ O(s) is -198.8 kJ mol ⁻	¹ , calculate $\Delta H_{\rm f}^{\circ}$ of CuO(s).	-
	ANSWER:	
Atmospheric greenhouse gases are typically transference this frequency range) and opaque (i.e. absorb) these two features result in warming at the Ear	at infrared frequencies. Briefly explain how	2
		-
Explain why electrons in atoms are not simply nucleus.	pulled continuously in towards the positive	2

CHEM1901/CH	EM1903	200	JZ-J-4	Ju	ne 2002	22/08(a)
• Explain, in terms of the quantum theory of atomic structure, why the Group 2 metals have significantly larger electron affinities than do the Group 1 metals.						
Order the follo	wing molecule	s in terms of inc	creasing molecu	lar dipole mome	ent.	-
		CFChH, CCh	4, CF ₃ H, CC	l₃H		_
smallest dipole					largest dipole	
• Write a balance	ed nuclear equ	ation for the for	mation of $^{48}_{22}$ Ti	through positro	on emission.	1

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

22/08(a)

Mark

s 3

• Complete the following table.

Species	\underline{SCl}_2	$H_3\underline{O}^+$	<u>S</u> OF ₄
Number of valence electron pairs about the underlined atom not involved in π bonding			
Shape of species			

• In a calorimetry experiment similar to E10, 50.0 mL of 1.00 M HNO₃ was combined with 50.0 mL of 0.540 M NaOH in a calorimeter. The heat capacity of the calorimeter is 80.0 J K⁻¹ and the heat capacity of the final solution is 426 J K⁻¹. The temperature was found to increase by 2.98 °C. Determine the molar heat of reaction for the process $H^+(aq) + OH^-(aq) \rightarrow H_2O(l)$.

4

ANSWER:

The average bond enthalpy of the O–H bond is 463 kJ mol⁻¹. Explain briefly why the heat of neutralisation calculated in the first part of this question differs significantly from this value.

• A rock sample is found to contain 2.100×10^{-15} mol of ²³² Th, a nuclide with a half life of 1.4×10^{10} years. Analysis of the sample reveals that 9.5×10^{6} ²³² Th nuclei have undergone decay. Using this information, estimate the age of the rock.	Mark s 2
ANSWER:	
• ClO ₃ is a highly reactive molecule. With reference to the Lewis structure of the molecule, explain why this is so.	2
• Explain briefly how electron pairing arises in the quantum theory of atomic structure.	2

• In the equation, $(P + n^2 a/V^2)(V - nb) = nRT$, the parameters " <i>a</i> " and " <i>b</i> " are used to correct the Ideal Gas Equation, $PV = nRT$, for non-ideal behaviour. Briefly explain what aspect of non-ideal behaviour each of these parameters corrects.	Mark s 2
• One way of separating oxygen isotopes is by gaseous effusion of carbon monoxide. Calculate the relative rates of effusion of ¹² C ¹⁶ O and ¹² C ¹⁸ O.	4
How many effusion processes would be needed to give a 23% increase in the ${}^{12}C^{16}O / {}^{12}C^{18}O$ ratio?	_

The decomposition of ozone to oxygen gas, $2O_3(g) \rightarrow 3O_2(g)$, is found to have the following rate law:	Μ
Rate = $k[O_3]$	
Provide a mechanism for this reaction that is consistent with this rate law.	
At 25 °C and an initial ozone concentration of 0.0100 M, the rate of formation of O_2 is 5.94×10^{-6} mol L ⁻¹ s ⁻¹ . How long would it take for the [O ₃] to drop to one tenth of its initial value at this temperature?	
One important machanism for the destruction of even in the upper structure is	_
One important mechanism for the destruction of ozone in the upper atmosphere is $O_{1}(x) = VO_{2}(x) + VO_{2}(x) + O_{2}(x)$	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	
Overall $O_3(g) + O(g) \rightarrow 2O_2(g)$	
Name the species that are the catalyst and the intermediate in this two-step reaction.	
E_a for the catalysed reaction is 11.9 kJ mol ⁻¹ whereas E_a for the uncatalysed reaction is 14.0 kJ mol ⁻¹ . At – 45 °C, the temperature of the ozone layer, what is the ratio of the rate constant for the catalysed reaction to that of the uncatalysed reaction? Assume that the frequency factor, A , is the same for each reaction.	

• A 0.25 M water solution of trimethylamine, $(CH_3)_3N$, has a pOH of 2.40. Find the K_b for trimethylamine and the p K_a for the trimethylammonium ion, $(CH_3)_3NH^+$.							Mark s 3		
$K_{\rm b} =$				$pK_a =$					
Oxalic acid i	s a diprotic a	cid:							2
	$H_2C_2O_4$	~`	$H^{\!+} \!$	$HC_2O_4^-$		$K_{a1} = 5.6 >$	$\times 10^{-2} { m M}$		
	$HC_2O_4^-$	~`	$H^{\!+} \!$	$C_2 O_4^{2-}$		$K_{a2} = 5.4 >$	< 10 ⁻⁵ M		
Calculate the $Na_2C_2O_4$.	e pH of a buf	fer solut	ion made	by adding	3.0 m	ol of H ₂ C ₂ C	D_4 and 1.0) mol of	
									_
			Γ	pH =					
 Calculate the 	mIL of 10	< 10 ⁻⁷ N							-
									2
			-						
				pH =					

• Consider the foll	lowing reaction.				Mai
$H_2(g$	g) + Br ₂ (g) =	\rightarrow 2HBr(g)	$\Delta H^{\circ} = -1$	$103.8 \text{ kJ mol}^{-1}$	s 6
L flask at 25 ℃ equilibrium, 1.10	to give a total p	ressure of 1.00 a ales remained in t	tm. After the s	ere mixed in a 1.00 system had reached ate the values of K ,	
ζ=	ΔG° =	=	$\Delta S^{\circ} =$		
				rium will shift if the	
Using Le Châtelie		ct the direction in		rium will shift if the	
Using Le Châtelie	er's principle, predic	ct the direction in		rium will shift if the	
Using Le Châtelie	er's principle, predic	ct the direction in		rium will shift if the	
Using Le Châtelie	er's principle, predic	ct the direction in		rium will shift if the	
Using Le Châtelie	er's principle, predic	ct the direction in		rium will shift if the	
-	er's principle, predic	ct the direction in		rium will shift if the	

The University of Sydney

<u>CHEMISTRY 1A (ADVANCED) - CHEM1901</u> CHEMISTRY 1A (SPECIAL STUDIES PROGRAM) - CHEM1903

FIRST SEMESTER EXAMINATION

JUNE 2002

Numerical Data

Physical constants

Planck constant = $h = 6.626 \times 10^{-34}$ J s Speed of light in vacuum = $c_0 = 2.998 \times 10^8$ ms⁻¹ Avogadro constant = $N_A = 6.022 \times 10^{23}$ mol⁻¹ Ideal gas constant = R = 8.314 J K⁻¹ mol⁻¹ = 0.08206 L atm K⁻¹ mol⁻¹

Conversion factors

1 nm = 10^{-9} m 1 kJ = 10^{3} J 1 kPa = 10^{3} Pa 1 L = 10^{-3} m³ 1 atm = 101.3 kPa

Solution to the quadratic equation

If
$$ax^2 + bx + c = 0$$
 then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

A periodic table is printed on the other side of this data sheet. Atomic weights are included in the periodic table.

... / 2

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 hydrogen																	2 HELIUM
Н																	He
1.008																	4.003
3 LITHIUM	4 BERYLLIUM											5 boron	6 carbon	7 NITROGEN	8 oxygen	9 FLUORINE	10 NEON
Li	Be											B	C	N	O	F	Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
sodium Na	MAGNESIUM Mg											ALUMINIUM Al	silicon Si	PHOSPHORUS P	SULFUR S	CHLORINE Cl	ARGON
22.99	24.31											26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
potassium K	CALCIUM Ca	scandium Sc	TITANIUM Ti	VANADIUM V	CHROMIUM Cr	MANGANESE Mn	IRON Fe	COBALT CO	NICKEL Ni	COPPER Cu	^{zinc}	GALLIUM Ga	GERMANIUM Ge	ARSENIC AS	selenium Se	BROMINE Br	KRYPTON Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
RUBIDIUM Rb	strontium Sr	YTTRIUM Y	zirconium Zr	NIOBIUM Nb	MOLYBDENUM	TECHNETIUM TC	RUTHENIUM Ru	RHODIUM Rh	PALLADIUM Pd	SILVER	cadmium Cd	INDIUM In	Sn	ANTIMONY Sb	TELLURIUM TEL	IODINE I	xenon Xe
KD 85.47	87.62	∎ 88.91	91.22	92.91	95.94	[98.91]	Ku 101.07	KII 102.91	106.4	Ag 107.87	112.40	114.82	511 118.69	121.75	127.60	∎ 126.90	131.30
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
CAESIUM	BARIUM	57 71	HAFNIUM	TANTALUM	TUNGSTEN	RHENIUM	OSMIUM	IRIDIUM	PLATINUM	GOLD	MERCURY	THALLIUM	LEAD	BISMUTH	POLONIUM	ASTATINE	RADON
Cs 132.91	Ba		Hf	Ta	W	Re 186.2	Os 190.2	Ir 192.22	Pt	Au 196.97	Hg	TI	Pb		Po	At	
87	137.34 88	89-103	178.49 104	180.95 105	183.85 106	186.2	190.2	192.22	195.09	196.97	200.59	204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
FRANCIUM	RADIUM		RUTHERFORDIU	M DUBNIUM	SEABORGIUM	BOHRIUM	HASSIUM	MEITNERIUM									
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt									
[223.0]	[226.0]		[261]	[262]	[266]	[262]	[265]	[266]									
	57	· 5	0	59	60	61	62	63	64	6		56	67	68	69	70	71
	1 37	J	0	37	00	01	02	1 03	04	0.) (0	U/	00	07	/0	1 / 1

Ho

164.93

Er

167.26

Tm

168.93

Yb

173.04

Lu

174.97

PERIODIC TABLE OF THE ELEMENTS

June 2002

CHEM1901/CHEM1903

22/08(b)

LANTHANIDE

S

La

138.91

Ce

140.12

Pr

140.91

Nd

144.24

Pm

[144.9]

Sm

150.4

Eu

151.96

Gd

157.25

Tb

158.93

Dy

162.50

ACTINIDES	89 ACTINIUM	90 THORIUM	91 protactinium	92 uranium	93 NEPTUNIUM	94 plutonium	95 Americium	96 curium	97 BERKELLIUM	98 californium	99 EINSTEINIUM	100 Fermium	101 mendelevium	102 NOBELIUM	103 LAWRENCIUM	
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	ł
	[227.0]	232.04	[231.0]	238.03	[237.0]	[239.1]	[243.1]	[247.1]	[247.1]	[252.1]	[252.1]	[257.1]	[256.1]	[259.1]	[260.1]	ł