22/08(a)

The University of Sydney

CHEMISTRY 1A (ADVANCED) - CHEM1901

CHEMISTRY 1A (SPECIAL STUDIES PROGRAM) - CHEM1903

CONFIDENTIAL

FIRST SEMESTER EXAMINATION

JUNE 2003

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY	SID	
NAME	NUMBER	
OTHER	TABLE	
NAMES	NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 19 pages of examinable material.
- Complete the written section of the examination paper in **INK**.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a •.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question and a Periodic Table may be found on a separate data sheet.
- Pages 12, 16, 22 & 24 are for rough working only.

OFFICIAL USE ONLY

Multiple choice section

		Marks
Pages	Max	Gained
211	41	

Short answer section

		Marks		
Page	Max	Gained		Marker
13	6			
14	5			
15	8			
17	6			
18	4			
19	7			
20	8			
21	9			
23	6			
Total	59			

Marks • Use the thermochemical data provided to calculate the heat of reaction of the 2 following reaction: $PCl_3(l) + Cl_2(g) \rightarrow PCl_5(s)$ $P_4(s) + 6Cl_2(g) \rightarrow 4PCl_3(l) \qquad \Delta H^\circ = -1280 \text{ kJ mol}^{-1}$ Data: $P_4(s) + 10Cl_2(g) \rightarrow 4PCl_5(s) \qquad \Delta H^\circ = -1774 \text{ kJ mol}^{-1}$ ANSWER: • Identify one property of a molecule necessary for it to be considered a "greenhouse 1 gas". • Write a balanced nuclear equation for the formation of $\frac{222}{86}$ Rn through alpha particle 1 emission. • Explain, in terms of the quantum theory of electrons, why the electronic energy is 2 decreased by the delocalisation of the valence electrons in the metallic bond.

•	Explain why electrons in atoms occupy discrete energy levels rather than being able to possess any possible energy below that required for ionisation.	Marks 2
•	A certain pigment is found to have an electronic excitation energy of 4.97×10^{-19} J. What is the wavelength at which this molecule will absorb radiation?	3
	ANSWER:	
	What colour do you expect this pigment to be? Explain your answer.	

• Complete the following	ng table.			Marks 3
Molecule	$\underline{S}O_2$	<u>P</u> F ₃	$\underline{Xe}F_2$	
Number of non- bonding valence electron pairs about the underlined atom				•
Number of valence electron pairs about the underlined atom involved in σ-bonding.				*
Shape of molecule				
calorimeter. The calor final solution is 426 J	rimeter heat capacit K^{-1} . The temperature	with 60.0 mL of 0.540 M y is 80.0 J K ⁻¹ and the l are was found to increas the process $H^+(aq) +$	neat capacity of the se by 3.58 °C.	3
		ANSWER:		
• Tritium, ³ ₁ H, in nuclear replaced. What fraction		with a half life of 12.26 ost in 5.0 years?	years and must be	2
		ANSWER:		+

• Consider the boili	ng points of the follow	ving hydrides:		Marks 3
	compound	boiling point (K)		
	H ₂ O	373		
	HF	293		
	NH ₃	240		
	CH ₄	111		
Explain the origin	of the difference in bo	oiling points between:		
i) CH ₄ and NH ₃				
)				
ii) HF and NH ₃				
iii) H ₂ O and HF				
				_
• Which molecule in reasons for your care	n each of the following hoice.	g pairs has the greater dip	oole moment? Give	3
a) SO ₂ or SO ₃				
h) SiE. or SE.				
b) SiF4 or SF4				_
b) SiF ₄ or SF ₄				_
b) SiF4 or SF4				_
b) SiF4 or SF4				
b) SiF ₄ or SF ₄				_
				-
				-

 • The normal boiling point of chloroform is 61.7 °C and its enthalpy of vaporisation is 31.4 kJ mol⁻¹. Calculate the entropy of vaporisation for chloroform at 1 atm.
 Marks 2

 Image: Answer:
 Image: Answer:

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

Marks • Find the volume of hydrogen gas collected over water when 1.00 g of zinc is 3 dissolved in excess dilute hydrochloric acid at 27 °C and 1.000 atm pressure. The vapour pressure of water at 27 °C is 3.6 kPa. 2 • Sketch to high pressure a plot of *PV/nRT* against pressure for: (a) an ideal gas, (b) H₂ gas and (c) CO₂ gas PV/nRT \geq Р 2 • In a diffusion experiment, an unknown gas diffused 2.646 times faster than nitrogen gas in the same apparatus under the same physical conditions. Calculate the molar mass of, and suggest an identity for, the unknown gas.

Marks • The decomposition of ozone to oxygen gas, $2O_3(g) \rightarrow 3O_2(g)$, is found to have the 8 following rate law: Rate = $k[O_3]$ Provide a mechanism for this reaction that is consistent with this rate law. At -45 °C, the temperature of the ozone layer, and with an initial ozone concentration of 1.00×10^{-3} mol L⁻¹ the rate of formation of O₂ is 1.05×10^{-7} mol L⁻¹ s⁻¹. How long would it take for the O₃ concentration to drop to half of its initial concentration at this temperature? One important mechanism for the destruction of ozone in the upper atmosphere is $O_3(g) + NO(g) \rightarrow NO_2(g) + O_2(g)$ $NO_2(g) + O(g) \rightarrow NO(g) + O_2(g)$ $O_3(g) + O(g) \rightarrow 2O_2(g)$ Overall Name the species that are the catalyst and the intermediate in this two-step reaction. $E_{\rm a}$ for the catalysed reaction is 11.9 kJ mol⁻¹ whereas $E_{\rm a}$ for the uncatalysed reaction is 14.0 kJ mol⁻¹. At -45 °C, what is the ratio of the rate constant for the catalysed reaction to that of the uncatalysed reaction? Assume that the frequency factor, A, is the same for each reaction.

• Calculate $[H^+]$, $[OH^-]$, $[H_2$ solution. Carbonic acid ($K_{a2} = 4.7 \times 10^{-11} \text{ M.}$			a 0.0010 M carbonic acid h $K_{a1} = 4.5 \times 10^{-7}$ M and	Marks 5
[H ⁺] =	[OH ⁻] =		[H ₂ CO ₃] =	1
[HCO ₃ ⁻] =		$[CO_3^{2-}] =$		
a buffer solution of pH 3.0	0? (<i>K</i> _a for HN	$O_2 = 4.0 \times 10^{-4}$		3
• The ionisation constant of a neutral solution at this te	mperature.	7 °C is 2.42 × 1	0 ⁻¹⁴ M ² . Calculate the pH of	1

Marks • If wet silver carbonate is dried in a stream of hot air, the air must have a certain 6 concentration level of carbon dioxide to prevent decomposition by the reaction $Ag_2CO_3(s) \implies Ag_2O(s) + CO_2(g)$ The enthalpy change, ΔH° , for this reaction is 79.14 kJ mol⁻¹ in the temperature range of 25 to 125 °C. Given that the partial pressure of CO₂ in equilibrium with solid Ag₂CO₃ is 8.20×10^{-6} atm at 25 °C, calculate the partial pressure of CO₂ necessary to prevent decomposition of Ag₂CO₃ at 110 °C. Assume that ΔS° does not change over this temperature range. Answer:

For the above reaction at equilibrium, describe what would happen to the equilibrium CO_2 pressure, the Gibbs free energy, and to the equilibrium constant if each of the following changes were made separately. Write *increased*, *decreased*, or *unchanged* in the table below.

CHANGE	equilibrium CO ₂ pressure	ΔG	$K_{ m p}$
CO ₂ gas is injected at constant volume			
The temperature is increased			

The University of Sydney

<u>CHEMISTRY 1A (ADVANCED) - CHEM1901</u> <u>CHEMISTRY 1A (SPECIAL STUDIES PROGRAM) - CHEM1903</u>

FIRST SEMESTER EXAMINATION

JUNE 2003

Numerical Data

Physical constants

Planck constant = $h = 6.626 \times 10^{-34}$ J s Speed of light in vacuum = $c_0 = 2.998 \times 10^8$ m s⁻¹ Avogadro constant = $N_A = 6.022 \times 10^{23}$ mol⁻¹ Faraday constant = F = 96485 C mol⁻¹ Ideal gas constant = R = 8.314 J K⁻¹ mol⁻¹ = 0.08206 L atm K⁻¹ mol⁻¹ Volume of 1 mol of ideal gas at 1 atm, 0 °C = 22.4 L Volume of 1 mol of ideal gas at 1 atm, 25 °C = 24.5 L

Conversion factors

0 °C = 273 K 1 atm = 101.3 kPa = 760.0 mmHg 1 nm = 10^{-9} m 1 MHz = 10^{6} Hz = 10^{6} s⁻¹ 1 L = 10^{-3} m³

A periodic table is printed on the other side of this data sheet. Atomic weights are included in the periodic table.

2003	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
June	1 нудгоден Н 1.008		-															2 нелим Не 4.003
	3 LITHIUM Li	4 BERYLLIUM Be											5 BORON B	6 CARBON C	7 Nitrogen N	8 oxygen O	9 FLUORINE F	10 Neon Ne
~	6.941 11 sodium Na	9.012 12 MAGNESIUM Mg	-										10.81 13 ALUMINIUM Al	12.01 14 silicon Si	14.01 15 PHOSPHORUS P	16.00 16 ^{SULFUR} S	19.00 17 ^{CHLORINE} Cl	20.18 18 Argon Ar
CHEM1901/CHEM1903	22.99 19 ротаssium К 20.10	24.31 20 CALCIUM Ca	21 scandiu Sc	T	um vanadiu I V	Cr	25 MANGANESE Mn	26 IRON Fe	27 cobalt Co	28 NICKEL NI	29 COPPER CU	30 ^{ZINC} Zn	26.98 31 GALLIUM Ga	28.09 32 GERMANIUM Ge	30.97 33 ARSENIC AS 74.02	32.07 34 selenium Se 79.06	35.45 35 вкоміне Вг	<u>39.95</u> <u>36</u> круртол Кг
M1901/C	39.10 37 RUBIDIUM Rb 85.47	40.08 38 strontium Sr 87.62	44.90 39 YTTRIUN Y 88.9	4(zircon Zi) 41 им мовии r Nb	- 52.00 42 могувреним Мо 95.94	54.94 43 тесниетим Tc [98.91]	55.85 44 RUTHENIUM RU 101.07	58.93 45 кноріим Rh 102.91	58.69 46 Palladium Pd 106.4	63.55 47 silver Ag 107.87	65.39 48 садиним Сd 112.40	69.72 49 ими In 114.82	72.59 50 ™ Sn 118.69	74.92 51 ANTIMONY Sb 121.75	78.96 52 TELLURIUM Te 127.60	79.90 53 iodine I 126.90	83.80 54 xenon Xe 131.30
CHEI	55 CAESIUM CS 132.91	56 вакиим Ва 137.34	57-7		2 73 TANTALU f Ta	A 74 TUNGSTEN W	[98.91] 75 внелим Re 186.2	76 озмиим ОS 190.2	77 видим Ir 192.22	78 PLATINUM Pt 195.09	79 GOLD Au 196.97	80 мексику Нд 200.59	81 тнацим Тl 204.37	82 LEAD Pb 207.2	83 візмитн Ві 208.98	84 POLONIUM PO [210.0]	85 ASTATINE At [210.0]	86 RADON Rn [222.0]
	87 FRANCIUM Fr [223.0]	88 RADIUM Ra [226.0]	89-10		4 105 DUBNIU f Db	106 зельогации Sg [266]	100.2 107 вонятим Вh [262]	190.2 108 назвим Наяв [265]	109 метлевим Мt [266]	199.09	190.97	200.37	204.37	201.2	200.90	[210.0]	[210.0]	[222.0]
	LANTHANID	ES 57 LANTHA L 3 138.	NUM A	58 сепим Се 140.12	59 praseodymium Pr 140.91	60 _{NEODYMIUM} Nd 144.24	61 promethium Pm [144.9]	62 samarium Sm 150.4	63 еигоріим Еи 151.96	64 GADOLINIT GAD 157.2	T	DIM DYSI	Эy	67 ногмим Но .64.93	68 еквиим Er 167.26	69 тницим Тт 168.93	70 ^{ytterbium} Yb 173.04	71 LUTETIUM Lu 174.97
(08(b)	ACTINIDES	80 ACTIN AC [227	им С	90 тнопим Th 232.04	91 protactinium Pa [231.0]	92 uranium U 238.03	93 Neptunium Np [237.0]	94 plutonium Pu [239.1]	95 AMERICIUM Am [243.1]	96 CURIUM Cm [247.1	97 BERKEL	7 LIUM CALE	Cf	99 NSTEINIUM Es 252.1]	100 Fermium Fm [257.1]	101 mendelevium Md [256.1]	102 Nobelium No [259.1]	103 LAWRENCIUM Lr [260.1]

PERIODIC TABLE OF THE ELEMENTS

22/08(b)