Chemistry 1Adv/1SSP (Chem1902/1904) November 2002

2002-N-2

2001-N-3

• $1 \times 10^{-5} \text{ M}$ $2.8 \times 10^{-17} \text{ M}$

2002-N-4

- III i.e. Fe^{3+}
- The potential will decrease. The Cu cell is undergoing reduction:

 $Cu^{2\scriptscriptstyle +}~+~2e^{\scriptscriptstyle -}~\rightarrow~Cu$

The addition of H_2S precipitates CuS and reduces the concentration of Cu^{2+} .

 $Cu^{2\scriptscriptstyle +}(aq) \ + \ H_2S(g) \ \rightarrow \ CuS(s) \ + \ 2H^{\scriptscriptstyle +}(aq)$

From the Nernst equation: $E = E^{\circ} - \frac{RT}{nF} \ln \frac{[Zn^{2+}]}{[Cu^{2+}]}$, if $[Cu^{2+}]$ drops the value of *E* will drop accordingly.

Or from Le Chatelier's principle, removal of Cu^{2+} ions will cause the redox reaction to oppose this change and try and generate more Cu^{2+} , i.e. the potential will drop.

•

The intermediate formed is the more stable tertiary carbocation. It is formed in preference to the less stable primary carbocation, which would lead to the primary alkyl bromide. achiral compound

2002-N-8

 $C_{20}H_{34}O_5$ • carboxylic acid, ketone, alcohol, alkene 4 32

Ċl