22/09(a) The University of Sydney

CHEM1907 - Chemistry 1 Life Sciences A Molecular (Advanced)

and

CHEM1908 - Chemistry 1 Life Sciences A (Advanced)

FIRST SEMESTER EXAMINATION

CONFIDENTIAL

JUNE 2002

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY NAME	SID NUMBER	
OTHER NAMES	TABLE NUMBER	

INSTRUCTIONS TO CANDIDATES

- Page16 is for rough work only.
- All questions are to be attempted. There are 14 pages of examinable material.
- Complete the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a •.
- Electronic calculators, including programmable calculators, may be used.
 Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
 Logarithms may also be used.
- Numerical values required for any question as well as a Periodic Table are printed on a separate data sheet.

OFFICIAL USE ONLY

Multiple choice section

\searrow		Marks
Pages	Max	Gained
611	32	

Short answer section

		Marks		
Page	Max	Gaineo	1	Marker
2	10			
3	10			
4	8			
5	5			
12	12			
13	10			
14	4			
15	9			
Total	68			

• Complete the following table. Give, as required, the formula, the systematic name and the principal ions present in a solution prepared by adding the substance to water.

M	a	r	k
	S	5	

FORMULA	SYSTEMATIC NAME	PRINCIPAL IONS IN WATER SOLUTION
	barium hydroxide	
HBrO		
	potassium nitrite	
		NH4 ⁺ (aq), SO4 ²⁻ (aq)
CuCl ₂ ·2H ₂ O		

• Name the ion with a 2+ charge which has completely filled shells for n = 1, 2 and 3, but no other electrons in shells with n > 3.

2

- 3
- Sodium chloride is insoluble in diethyl ether (CH₃CH₂–O–CH₂CH₃), but soluble in water. Explain this solubility behaviour in terms of intermolecular forces.

• Several types of bacteria perform a reaction between urea, (NH₂)₂CO, and water to produce ammonia and carbon dioxide. Write a balanced chemical equation for this reaction.

Mark s 10

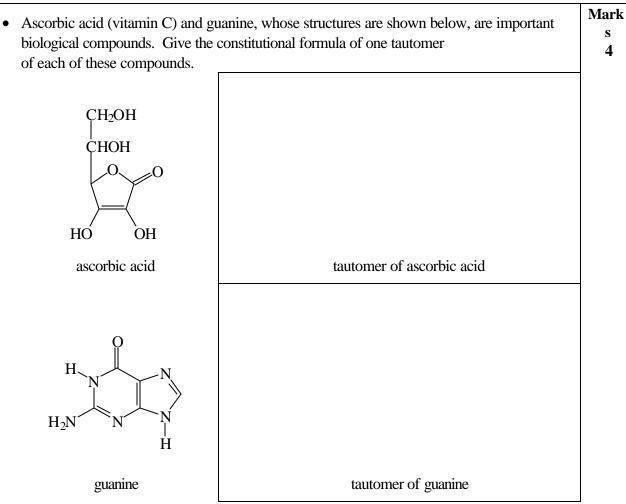
If a colony of bacteria converted 0.057 g of urea to ammonia and carbon dioxide, what volume of carbon dioxide would be produced at 1.0 atm and 37 $^{\circ}$ C?

ANSWER:

To accelerate the rate of the reaction, the bacteria produce a nickel-containing protein called urease. One molecule of urease contains two nickel ions. Given that the nickel content of urease is 0.14% (i.e. 0.14 g Ni per 100 g enzyme), calculate the molecular weight of urease.

ANSWER:

The nickel in urease is present as $N\dot{r}^{2+}$. Write the ground state electron configuration of $N\dot{r}^{2+}$.

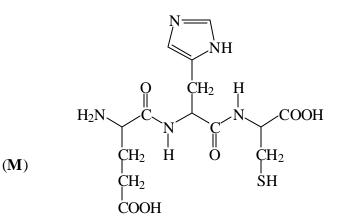

Mark • For each of the following species: **s8** a) Draw a Lewis structure showing the arrangement of valence shell electron pairs (σ and, where appropriate, π and non-bonding). b) Describe the geometry adopted by the electron pairs (σ and non-bonding) as predicted by the valence shell electron pair repulsion (VSEPR) theory. c) Describe the shape of the species in words. d) Indicate the hybridisation state of the central atom in each of the species. CH_2Cl_2 O_3 a) b) c) d) HCN $NO_3^$ a) b) c) d)

• Gastric juices in the stomach of a healthy human have pH = 2 due to a solution of hydrochloric acid. What is the concentration of hydrochloric acid in healthy human gastric juices, expressed in g L⁻¹? ANSWER: An increase in the acidity of the human gastric juices to pH = 1.0 can cause discomfort, known as heartburn. Heartburn can be treated with an antacid preparation, such as Alka-Seltzer (NaHCO₃), which neutralises the stomach acid, according to the following equation. H⁺(aq) + HCO₃⁻(aq) \rightarrow H₂O(1) + CO₂(g) If one tablet of Alka-Seltzer contains 0.50 g of NaHCO₃ and the volume of gastric juices is 265 mL, how many tablets of Alka-Seltzer would be required to alter the pH value of the stomach from pH = 1.0 (heartburn) to pH = 2.0 (healthy)?

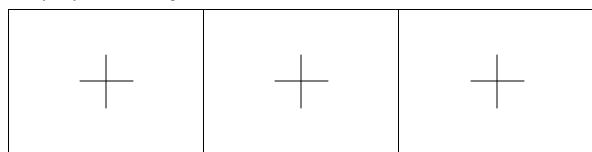
ANSWER:

• Complete the following table.			
STARTING MATERIAL NAME (where required)	REAGENTS/ CONDITIONS	CONSTITUTIONAL FORMULA(S) OF MAJOR ORGANIC PRODUCT(S)	
COOH Name:	1. SOCl ₂ / heat 2. CH ₃ OH		
SH SH		SCH ₃	
Name:	1. NaBH₄ 2. H [⊕] / H ₂ O		
	$OH^{\Theta}/H_2O/heat$		
ОН	hot conc. H ₂ SO ₄		
СНО	excess CH ₃ CH ₂ OH HCl (catalyst)		
О Н3 СН3 С-О С-С-С-СН3	$CH_3CH_2S^{\Theta} Na^{\oplus}$		
	HBr (CCl ₄ solvent)		

Mark • Consider the following two monosaccharides, (L) and (M). S 10 CH₂OH CH₂OH H OH H OH H **(M)** HC methyl β -D-glucopyranoside β -D-glucopyranose Describe a chemical test that could be used to distinguish (L) from (M). Include in your answer, the reagent you would use, what would be observed and a chemical equation that explains what is occurring in the reaction. Give the reagents to convert (L) to (M). Give the reagents to convert (M) to (L). Sugar (M) exists in equilibrium with an open chain form. Give the Fischer projection of this open chain form. List the functional groups present in (L). Draw the Haworth structure of the disaccharide 4-O-(β -D-glucopyranosyl)- $-\alpha$ -D-glucopyranose.


THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

Mark


S

9

• Consider the tripeptide glutamylhistidylcysteine (Glu-His-Cys) (**M**), whose constitutional formula is shown below.

Draw the Fischer projections with L configurations for the amino acids obtained from the hydrolysis of (\mathbf{M}) using hot concentrated NaOH solution.

The p K_a values of cysteine are p $K_{a1} = 1.71$ (α -COOH), p $K_{a2} = 8.33$ (α -NH₃^{\oplus}) and p $K_{a3} = 10.78$ (CH₂SH). Give the structures of the predominant species present in water solutions of cysteine at pH 1.00 and pH 5.02.

рН 1.00	рН 5.02

Give the zwitterionic form of His-Glu.

22/09(b) The University of Sydney

CHEM1907 - Chemistry 1 Life Sciences A Molecular (Advanced) and CHEM1908 - Chemistry 1 Life Sciences A (Advanced)

FIRST SEMESTER EXAMINATION

JUNE 2002

Numerical Data

Physical constants

Gas constant = R = 8.314 J K⁻¹ mol⁻¹

 $= 0.08206 \text{ L} \text{ atm } \text{K}^{-1} \text{ mol}^{-1}$

Conversion factors

 $1 \text{ nm} = 10^{-9} \text{ m}$ $1 \text{ kJ} = 10^{3} \text{ J}$ $1 \text{ mg} = 10^{-3} \text{ g}$ $1 \text{ L} = 10^{-3} \text{ m}^{3}$ $1 \text{ mL} = 10^{-3} \text{ L}$ 1 atm = 101.3 kPa

> A periodic table is printed on the other side of this data sheet. Atomic weights are included in the periodic table.

CHEM1907/CHEM1908 Р R

PERIODIC TABLE OF THE ELEMENTS

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 hydrogen H 1.008																	2 нелим Не 4.003
З Lithium Li	4 beryllium Be											5 boron B	6 carbon C	7 nitrogen N	8 oxygen O	9 ^{fluorine} F	10 _{меом} Ne
6.941 11 sodium Na	9.012 12 magnesium Mg											10.81 13 ALUMINIUM Al	12.01 14 silicon Si	14.01 15 рнозрногиз Р	16.00 16 ^{SULFUR} S	19.00 17 ^{CHLORINE}	20.18 18 Argon Ar
22.99	24.31	•							• •	• •		26.98	28.09	30.97	32.07	35.45	39.95
19 ^{ротаssium} К	20 салсним Са	21 scandium Sc	22 тіталіцм Ті	23 vanadium V	24 CHROMIUM Cr	25 manganese Mn	26 ^{іком} Fe	27 совалт Со	28 ^{NICKEL}	29 ^{copper} Cu	30 ^{ZINC} Zn	31 GALLIUM Ga	32 germanium Ge	33 arsenic As	34 selenium Se	35 bromine Br	36 krypton Kr
1X 39.10	Ca 40.08	44.96	47.88	v 50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.59	74.92	78.96	DI 79.90	83.80
37 RUBIDIUM Rb	38 strontium Sr	39 ^{уттяним} Ү	40 zirconium Zr	41 ^{мовим} Nb	42 MOLYBDENUM MO	43 technetium Tc	44 ^{RUTHENIUM} Ru	45 _{кнодіим} Rh	46 palladium Pd	47 SILVER Ag	48 cadmium Cd	49 ілоіим In	50 тъ Sn	51 ANTIMONY Sb	52 TELLURIUM Te	53 iodine I	54 xenon Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98.91]	101.07	102.91	106.4	107.87	112.40	114.82	118.69	121.75	127.60	126.90	131.30
55 CAESIUM	56 barium	57-71	72 hafnium	73 tantalum	74 TUNGSTEN	75 RHENIUM	76 озміим	77 IRIDIUM	78 PLATINUM	79 GOLD	80 mercury	81 THALLIUM	82 LEAD	83 bismuth	84 POLONIUM	85 ASTATINE	86 RADON
Cs 132.91	Ba 137.34		Hf 178.49	Ta 180.95	W 183.85	Re 186.2	Os 190.2	Ir 192.22	Pt 195.09	Au 196.97	Hg 200.59	Tl 204.37	Pb 207.2	Bi 208.98	Po [210.0]	At [210.0]	Rn [222.0]
87	88	89-103	104	105	106	107	108	109	195.09	190.97	200.39	204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
FRANCIUM	RADIUM Ra		RUTHERFORDIUM Rf	DUBNIUM Db	SEABORGIUM Sg	BOHRIUM Bh	HASSIUM HS	MEITNERIUM Mt									
[223.0]	[226.0]		[261]	[262]	[266]	[262]	[265]	[266]									
LANTHANID	DE 57		8 RIUM PRA	59 seodymium	60 NEODYMIUM	61 promethium	62 samarium	63 Europium	64 gadolini			56 ROSIUM I	67	68 erbium	69 THULIUM	70 ytterbium	71 LUTETIUM

Gd

157.25

Tb

158.93

Dy

162.50

Er

167.26

Tm

168.93

Yb

173.04

Lu

174.97

Ho

164.93

LANTHANIDE

S

Nd

144.24

Pm

[144.9]

Sm

150.4

Eu

151.96

Pr

140.91

Ce

140.12

La

138.91

ACTINIDES	89 ACTINIUM	90 THORIUM	91 protactinium	92 uranium	93 NEPTUNIUM	94 plutonium	95 Americium	96 curium	97 BERKELLIUM	98 californium	99 EINSTEINIUM	100 Fermium	101 mendelevium	102 NOBELIUM	103 LAWRENCIUM	
ACTINIDES	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	ł
	[227.0]	232.04	[231.0]	238.03	[237.0]	[239.1]	[243.1]	[247.1]	[247.1]	[252.1]	[252.1]	[257.1]	[256.1]	[259.1]	[260.1]	ł