The University of Sydney

CHEM1907 - CHEMISTRY 1 LIFE SCIENCES A MOLECULAR (ADVANCED)

CHEM1908 - CHEMISTRY 1 LIFE SCIENCES A (ADVANCED)

CONFIDENTIAL

FIRST SEMESTER EXAMINATION

JUNE 2003

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY NAME	SID NUMBER	
OTHER NAMES	TABLE NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 14 pages of examinable material.
- Complete the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a ●.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution. Logarithms may also be used.
- Numerical values required for any question as well as a Periodic Table are printed on a separate data sheet.
- Page 16 is for rough work only.

OFFICIAL USE ONLY

Multiple choice section

	Marks							
Pages	Max	Gained						
6-11	32							

Short answer section

		Marks		
Page	Max	Gained		Marker
2	10			
3	5			
4	10			
5	8			
12	13			
13	8			
14	5			
15	9			
Total	68			

22/09(a)

Marks • Complete the following table. Give, as required, the formula, the systematic name 5 and the principal ions present in a solution prepared by adding the substance to water. For the substances that do not form ions in solution, write N/A in this column. PRINCIPAL IONS IN FORMULA SYSTEMATIC NAME WATER SOLUTION MgCl₂ sodium chromate CO $H^+(aq), IO^-(aq)$ iron(III) nitrate-6-water 5 • Electron configurations are governed by three rules: the 'Aufbau Principle', the 'Pauli Exclusion Principle' and 'Hund's Rule of Maximum Spin Multiplicity'. The ground state electron configurations of He, N and O have been written INCORRECTLY, as shown below. For each element, name the electron configuration rule that has been broken. Element **Electron Configuration** Name of rule that has been broken ↑↓ He 1*s* 2s2p $\uparrow\downarrow$ ↑↓ $\uparrow\downarrow$ ↑ Ν 1*s* 2s2p↑↓ ↑↓ $\uparrow\uparrow$ ↑ ↑ 0 1*s* 2s2pWrite the electron configuration of Fe^{2+} . What property of iron makes it useful to biological systems?

 Draw the Lewis structures, showing all valence electrons for the following species. Indicate which of the molecules possess a dipole.
CH₃Cl
NO₂F
NCO⁻
NCO⁻
Dipole: YES / NO
Dipole: YES / NO

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

Marks • The partial Lewis structure of lactic acid, the molecule that forms in muscle during 10 exercise, is shown below. Complete the Lewis structure of lactic acid by drawing the non-bonded electron pairs around the relevant atoms. Η Η H-Ĭ H H 0 Complete the following table. Geometric arrangement of the Hybridisation of atom Atom groups around the atom ^{1}C ^{2}O ^{3}C Name three types of intermolecular interactions expected of lactic acid. The p K_a of lactic acid is 3.08 and the p K_b of ammonia is 4.76. Determine whether products or reactants are favoured in the following equilibrium reaction. Provide a brief rationale for your answer. $CH_3CH(OH)CO_2^- + NH_4^+$ $CH_3CH(OH)COOH + NH_3 \rightarrow$

8

Marks • One of the causes of acid rain is a reaction occurring in the upper atmosphere between gaseous NO₂ and water to produce nitric acid and gaseous NO. Write a balanced chemical equation for this reaction.

As part of their school project on acid rain, some high school students collected a sample of rain (220 mL) and measured the pH value of the solution, reporting the value as pH = 3.9. Assuming that the rain sample does not contain any acids other than nitric acid, calculate the volume of gaseous NO₂ that would have been consumed in the upper atmosphere (where temperature = -56 °C and pressure = 11.6 kPa) to produce the sample of rain collected by the students.

ANSWER:

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

• Complete the following table.									
STARTING MATERIAL NAME (where required)	REAGENTS/ CONDITIONS	CONSTITUTIONAL FORMULA(S) OF MAJOR ORGANIC PRODUCT(S)							
Br Name:	$\mathrm{CH}_3\mathrm{CH}_2\mathrm{S}^{\ominus}\mathrm{Na}^{\oplus}$								
Cl	excess (CH ₃) ₂ NH								
Name:	3 M HCl / heat								
H		OCH ₃ H OCH ₃							
Name:	H ₂ / Pd on C ethanol solvent								
	dilute H ₂ SO ₄ heat								
S-S	Zn / dilute HCl								
ОН									

Marks • Consider the following two monosaccharides, (A) and (B). 8 CH₂OH CH₂OH Η O OH QН Ή HC (**A**) **(B)** ÔH ΗĊ Ĥ OH α -D-xylofuranose β-D-altropyranose Draw Fischer projections of the open chain forms of A and B. A B Give the products obtained when D-xylose is treated with the following reagents. $[Ag(NH_3)_2]^+ / OH^-$ solution NaBH₄ in methanol solvent Draw the Haworth structure of a non-reducing disaccharide, which yields D-altrose and D-xylose on acid hydrolysis.

Marks • The side-chain of the amino acid tryptophan (C) is a substituted derivative of the 3 heterocycle indole (**D**). Explain with the aid of diagrams whether you would expect indole to have aromatic stability or not. Would you expect the nitrogen atom of indole to be basic? Give reasons for your answer. CH2-CH-COOH NH₂ (**C**) **(D**) 2 • Hydrolysis of dAMP (E), a nucleotide important in DNA synthesis, gives the sugar D-2-deoxyribose and the nucleic base adenine. Give the structure of adenine and the structure of one tautomer of adenine. NH_2 Η Ĥ **(E)** ÓН adenine tautomer of adenine

Marks • Consider the tripeptide phenylalanylglutamyltyrosine (Phe-Glu-Tyr) (**F**), whose 9 constitutional formula is shown below. CH₂CH₂COOH H COOH H₂N **(F)** H ∬ O OH CH_2 Draw the constitutional formula(s) of the product(s) obtained when the tripeptide is subjected to the following conditions. cold 2 M NaOH 5 M HCl / heat The pK_a values of tyrosine are pK_{a1} = 2.20 (α -COOH), pK_{a2} = 9.11 (α -NH₃[⊕]) and $pK_{a3} = 10.07$ (-CH₂C₆H₄OH). Draw the structure of the zwitterionic form of tyrosine. At what pH will this be the predominant species in aqueous solution? Give the constitutional formulas for the following dipeptides present in water solution at the indicated pH values. Tyr-Phe, pH 12.0 Glu-Tyr, pH 1.0

The University of Sydney

CHEM1907 - CHEMISTRY 1 LIFE SCIENCES A MOLECULAR (ADVANCED)

CHEM1908 - CHEMISTRY 1 LIFE SCIENCES A (ADVANCED)

FIRST SEMESTER EXAMINATION

JUNE 2003

Numerical Data

Physical constants

Planck constant = $h = 6.626 \times 10^{-34}$ J s Speed of light in vacuum = $c_0 = 2.998 \times 10^8$ m s⁻¹ Avogadro constant = $N_A = 6.022 \times 10^{23}$ mol⁻¹ Faraday constant = F = 96485 C mol⁻¹ Ideal gas constant = R = 8.314 J K⁻¹ mol⁻¹ = 0.08206 L atm K⁻¹ mol⁻¹ Volume of 1 mol of ideal gas at 1 atm, 0 °C = 22.4 L Volume of 1 mol of ideal gas at 1 atm, 25 °C = 24.5 L

Conversion factors

0 °C = 273 K 1 atm = 101.3 kPa = 760.0 mmHg 1 nm = 10^{-9} m 1 MHz = 10^{6} Hz = 10^{6} s⁻¹ 1 L = 10^{-3} m³

A periodic table is printed on the other side of this data sheet. Atomic weights are included in the periodic table. CHEM1907/CHEM1908 C 132 8' FRANC F [223

	nibroom				
	H				
	1.008				
	3	4			
	LITHIUM	BERYLLIUM			
	Li	Be			
	6.941	9.012			
	11	12			
	SODIUM	MAGNESIUM			
	Na	Mg			
	22.99	24.31			
	19	20	21	22	/
	POTASSIUM	CALCIUM	SCANDIUM	TITANIUM	VAN
	Κ	Ca	Sc	Ti	
	39.10	40.08	44.96	47.88	50
	37	38	39	40	4
	RUBIDIUM	STRONTIUM	YTTRIUM	ZIRCONIUM	NI
	Rb	Sr	Y	Zr	I
	85.47	87.62	88.91	91.22	92
ſ	55	56	57-71	72	,
1	CAESIUM	BARIUM		HAFNIUM	TAN
	0	р		TTO	r

HYDROGEN

PERIODIC TABLE OF THE ELEMENTS

HELIUM

He 4.003

1.008		_																4.005
3	4												5	6	7	8	9	10
LITHIUM	BERYLLIUM												BORON	CARBON	NITROGEN	OXYGEN	FLUORINE	NEON
Li	Be												B	C	Ν	0	F	Ne
6.941	9.012												10.8	1 12.01	14.01	16.00	19.00	20.18
11	12												13	14	15	16	17	18
SODIUM	MAGNESIUM												ALUMINI		PHOSPHORUS		CHLORINE	ARGON
Na	Mg												Al		Р	S	Cl	Ar
22.99	24.31		-			1							26.9		30.97	32.07	35.45	39.95
19	20	21	2		23	24	25	26	27	28	29	30	31	32	33	34	35	36
POTASSIUM K	CALCIUM Ca	scandium Sc	TITAN	i 1	VANADIUM V	CHROMIUM	MANGANESE Mn	Fe	COBALT CO	NICKEL Ni	COPPER Cu	ZINC Zn			i ARSENIC AS	selenium Se	BROMINE Br	KRYPTON Kr
K 39.10	Ca 40.08	SC 44.96	⊥ 47.		v 50.94	52.00	54.94	ге 55.85	CO 58.93	1 NI 58.69	63.55	211 65.39	69.7		AS 74.92	78.96	DI 79.90	KI 83.80
39.10	38	39	47.			-	-									52		
J / RUBIDIUM	38 STRONTIUM	39 yttrium	4 ZIRCO		41 NIOBIUM	42 molybdenum	43	44 RUTHENIUM	45 RHODIUM	46 palladium	47 SILVER	48 CADMIUM	49		51 ANTIMONY	JZ tellurium	53 IODINE	54 xenon
Rb	Sr	Y	Z		Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In		Sb	Te	Ι	Xe
85.47	87.62	88.91	91.		92.91	95.94	[98.91]	101.07	102.91	106.4	107.87	112.40				127.60	126.90	131.30
55	56	57-71	7	2	73	74	75	76	77	78	79	80	81	82	83	84	85	86
CAESIUM	BARIUM		HAFN	NUM	TANTALUM	TUNGSTEN	RHENIUM	OSMIUM	IRIDIUM	PLATINUM	GOLD	MERCURY	THALLIU	M LEAD	BISMUTH	POLONIUM	ASTATINE	RADON
Cs	Ba		H		Та	W	Re	Os	Ir	Pt	Au	Hg	Tl		Bi	Po	At	Rn
132.91	137.34		178		180.95	183.85	186.2	190.2	192.22	195.09	196.97	200.59	204.3	207.2	208.98	[210.0]	[210.0]	[222.0]
87	88	89-103)4	105	106	107	108	109									
FRANCIUM Fr	RADIUM Ra		RUTHERF	ordium	DUBNIUM Db	SEABORGIUM	BOHRIUM Bh	HASSIUM HS	MEITNERIUM Mt									
[223.0]	Ka [226.0]		[26		[262]	Sg [266]	[262]	[265]										
[225.0]	[220.0]		[20)]]	[202]	[200]	[202]	[203]	[266]									
				1											10			
	57		58 erium		59	60	61	62	63	64	6		66	67	68	69	70	71
LANTHANID	LO				eodymium Pr	NEODYMIUM Nd	PROMETHIUM Pm	samarium Sm	EUROPIUM Eu	GADOLINIU GAD	текв Т		SPROSIUM	HOLMIUM HO	ERBIUM Er	THULIUM Tm	VTTERBIUM Yb	LUTETIUM Lu
	138.				4 0.91	1 NU 144.24	[144.9]	5111 150.4	151.96	157.2			Dy 62.50	164.93	167.26	168.93	173.04	174.97
	89	-	90.12 90	-	40.91 91	92	<u>93</u>	94	95	96	9		98	<u>99</u>	107.20	108.95	102	1/4.97
ACTINIDES			90 Iorium		91 TACTINIUM	92 uranium	93 NEPTUNIUM	94 PLUTONIUM	95 AMERICIUM	90 CURIUM			98 LIFORNIUM	99 EINSTEINIUM	100 FERMIUM	IUI MENDELEVIUM	IUZ NOBELIUM	1U5 LAWRENCIUM
ACTINIDE	A		Гh		Pa	U	Np	Pu	Am	Cm			Cf	Es	Fm	Md	No	Lr
	[227		32.04		231.0]	238.03	[237.0]	[239.1]	[243.1]	[247.1			252.1]	[252.1]	[257.1]	[256.1]	[259.1]	[260.1]
		•			•				·		•	• -		•				•

22/09(b)