November2001 CHEM1909 (1LS Courses)

2001-N-2

• $2.6 \times 10^{-15} \text{ M}^{-1}$ 91 kJ mol⁻¹ 7200 K

2001-N-3

•

2001-N-4

• NaOH(s) \rightarrow Na⁺(aq) + H₂PO₄⁻(aq) -35 kJ mol⁻¹ H⁺(aq) + OH⁻(aq) \rightarrow H₂O $\Delta H = -59$ kJ mol⁻¹

Confirms Hess's Law. ΔH is the sum of the above 2 equations.

• Formation of ammonia is favoured by low temperature. High temperature is required to make reaction proceed at a useful rate. These two factors must be balanced to find the optimum temperature to run the process.

2001-N-5

• 1×10^5

At the higher concentrations, intermolecular attractions become significant and the osmotic pressure is less than expected.

• -2.06 °C

2001-N-6

• Excess H⁺ is removed by: $HPO_4^{2-} + H^+ \rightarrow H_2PO_4^{-}$ Excess OH⁻ is removed by: $H_2PO_4^{-} + OH^{-} \rightarrow HPO_4^{2-} + H_2O$

pH = 7.20 Max buffering capacity when [base]=[acid] and pH = pK_a

0.33

• $7.1 \times 10^{-4} \text{ M}$

2001-N-7

Structural isomerism - the metal is bonded to different atoms.
eg (coordination sphere isomerism) [Cr(H₂O)₆]Cl₃ and [Cr(H₂O)₅Cl]Cl₂·H₂O
eg (linkage isomerism) [Co(NH₃)₅(ONO)]Cl₂and [Co(NH₃)₅(NO₂)]Cl₂

Geometric isomerism - the spatial arrangement of the ligands is different. eg

Optical isomerism (enantiomers) - non-superimposable mirror images eg

cis-isomer

• $2 \times 10^{-12} \text{ M}$

2001-N-8

• 0.0239 V

 $PvH_2^- + Asc^- \implies Pv^- + AscH_2^-$

+0.166 V

2001-N-9

- 6.9×10^{-6} s
- $1.49 \times 10^5 \text{ s}^{-1}$

2001-N-10

- The X radicals are regenerated in the overall sequence, so ozone is depleted but the ozone destroying radical is not.
- The grease removing capabilities of the water are dependent on the concentration of the soap micelles in the water. The bubbles are not part of the cleaning system.
- Sodium oleate has 1 non-polar tail. Magnesium oleate has 2 non-polar tails. The shape of magnesium oleate makes it easier to form inverse micelles.

2001-N-11

The negative ions cause the colloidal particles with positively charged outer layers to come closer together by reducing the inter[particle repulsions. This eventually leads to coagulation of the particles.

2001-N-12

Odd numbered nuclei are less stable than even number nuclei - hence the zig-zag nature of curve. Heavier elements are synthesised from lighter ones and hence are less abundant.

Fe (atomic number 26) is the most stable nuclide and hence has a higher than expected abundance. It has a stable A/Z ratio of approximately 2 and a very high binding energy.