22/03(a) The University of Sydney

CHEM1909 - CHEMISTRY 1 LIFE SCIENCES B MOLECULAR (ADVANCED)

CONFIDENTIAL

SECOND SEMESTER EXAMINATION

NOVEMBER 2002

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY	SID	
NAME	NUMBER	
OTHER	TABLE	
NAMES	NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 16 pages of examinable material.
- Complete the examination paper in **INK**.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a •.
- Electronic calculators, including programmable calculators, may be used.
 Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Some useful formulas, a Periodic Table and numerical values required for any question may be found on a separate data sheet.
- Pages 11, 14 and 20 are for rough working only.

OFFICIAL USE ONLY

Multiple choice section

	Marks		
Pages	Max Gained		
2-8	28		

Short answer section

	Marks			
Page	Max	Gained		Marker
9	9			
10	10			
12	8			
13	13			
15	7			
16	9			
17	6			
18	4			
19	6			
Total	72			

• Write a balanced equation for the oxidation of glucose (C₆H₁₂O₆) to carbon dioxide and water.

0	
9	

	$\Delta H^{\circ}_{f}(298 \text{ K}) / \text{kJ mol}^{-1}$	S° (298 K) / J K ⁻¹ mol ⁻¹
$C_6H_{12}O_6(s)$	-1274	212
$O_2(g)$	0	205
CO ₂ (g)	-393	214
H ₂ O(l)	-286	69.9

$\Delta H^{\circ} =$
$\Delta S^{\circ} =$
$\Delta G^{\circ} =$

A typical oxygen consumption for a 70 kg person at rest is 8.60×10^{-3} mol minute⁻¹ at 298 K and 1 atm. Suppose this amount of oxygen gas is all used in the oxidation of glucose. Calculate the enthalpy production (in kJ min⁻¹) of this person at rest.

CHEMIYUY	2002-1N-4	100	ovember 2002	22/05(a)
• The pyridinium ion is a weat 0.100 M pyridinium chlorid	ak monoprotic act de solution was ti	id with a p K_a of 5.22. trated with 0.0500 M	A 25.0 mL sample of a NaOH.	Mark s8
Calculate the pH of the solution: 0.00 mL, 30.0 m	ution after addition L, 50.0 mL, 75.0	n of the following among mL.	ounts of sodium hydroxic	le
0.0 mL				
		pH =		
30.0 mL		I		
		nU –		
50.0 mL		p11 –		
75.0		pH =		
75.0 mL				
		pH =		

22/05(a)

• Draw the Lewis structures (including resonance structures where appropriate) of chlorine pentafluoride, formate ion and allene. Indicate the hybridisation of the underlined atom and shape of the molecule or ion.

Mark

s 9

4

Species	Lewis structure	Hybridisation of underlined atom	Shape of molecule or ion	
<u>C</u> IF ₅				
H <u>C</u> O2 [−]				
H ₂ C <u>C</u> CH ₂				
• When heated, lithium atoms emit photons of red light with a wavelength of 670 nm. What is the energy (in kJ mol ⁻¹) and frequency of this radiation?				

E =	ν =

CHEMIIYUY	2002-IN-0	November 2002	22/05(a)
Calculate the molar	solubility of limestone, CaCO ₃ ,	given $K_{\rm sp} = 3.3 \times 10^{-9} {\rm M}^{-2}$.	Mark s 4
	Answ	/er:	
With the aid of equ limestone.	ations, explain the effect acid rai	n would have on the solubility of	
• At what temperatur The normal melting	re would a solution of iodine (0.6 point of cyclohexane is 6.6 °C	545 g) in cyclohexane (50.0 g) free and $K_f = 20.0 \text{ K kg mol}^{-1}$.	ze? 3
	Г		
	Anou	10.001	

CHEIMI1909 2002-IN-7 INOVEMBER 2002	22/05(a)	
• How long must a current of 2.0 A be applied to a pure AgNO ₃ solution to deposit 1.0 g of silver?	Mark s 3	
Answer:		
• Typical concentrations of Na ⁺ and K ⁺ in the intracellular and extracellular fluid are give below.	en 3	
$Na^+ = 142 \text{ mM}$ extracellular, 10 mM intracellular		
$K^+ = 4 \text{ mM}$ extracellular, 140 mM intracellular		
Estimate the potential difference between the inside and outside of a cell at 37 °C.		
Answer:		
• Use the standard reduction potentials on the data page to calculate the value of ΔG° (Gibbs free energy of reaction) for the following reaction.		
$2H^{+}(aq) + H_{2}O_{2}(aq) + 2Fe^{2+}(aq) \rightarrow 2Fe^{3+}(aq) + 2H_{2}O$		

CHEM1909	2002-IN-9	November 2002	22/05(a)		
• The rate constant for temperature is incre Calculate the activa	or the unimolecular cyclisation of eased from 25 °C to 45 °C. ation energy, E_a , for this reaction	E compound X triples when the	Mark s 4		
	$E_{a} =$				
If the initial rate of 1.4 mM s^{-1} at 25 °	cyclisation measured in a 1.0 M s C, what is the half life of compo	solution of compound X is und X at 25 °C?			
	$t_{\frac{1}{2}} =$				

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

The University of Sydney

CHEM1909 - CHEMISTRY 1 LIFE SCIENCES B MOLECULAR (ADVANCED)

Physical constants

Faraday constant = $F = 96485 \text{ C mol}^{-1}$	Speed of light = $c = 2.998 \times 10^8 \text{ m s}^{-1}$						
Planck constant = $h = 6.626 \times 10^{-34} \text{ J s}$	Avogadro constant = $N_{\rm A}$ = 6.022 × 10 ²³ mol ⁻¹						
Standard atmosphere $= 101 325 Pa$	Ideal gas constant = $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$						
= 760 mmHg	$= 0.08206 \text{ L} \text{ atm } \text{K}^{-1} \text{ mol}^{-1}$						

Conversion factors

0 °C = 273 K	$1 \text{ mL} = 10^{-3} \text{ L}$	$1 L = 10^{-3} m^3$	$1 \text{ mPa} = 10^{-3} \text{ Pa}$
$1 \text{ kJ} = 10^3 \text{ J}$	$1 \text{ mA} = 10^{-3} \text{ A}$	$1 \text{ nm} = 10^{-9} \text{ m}$	$1 \text{ mg} = 10^{-3} \text{ g}$

Standard Reduction Potentials at 298 K

$H_2O_2(aq) + 2H^+(aq) + 2e^- \leftarrow 2H_2O$	$E^{\circ} = +1.78 \text{ V}$
$Fe^{3+}(aq) + e^{-} \longleftarrow Fe^{2+}(aq)$	$E^{\circ} = +0.77 \text{ V}$
$Cu^{2+}(aq) + 2e^{-} \leftarrow Cu(s)$	$E^{\circ} = +0.34 \text{ V}$
$2H^+(aq) + 2e^- \leftarrow H_2(g)$	$E^\circ = 0.00 \text{ V}$
$Ni^{2+}(aq) + 2e^{-} \leftarrow Ni(s)$	$E^\circ = -0.24 \text{ V}$
$Fe^{2+}(aq) + 2e^{-} \leftarrow Fe(s)$	$E^{\circ} = -0.44 \text{ V}$

Useful Formulas

Thermodynamics and Equilibrium $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$ $\Delta G^{\circ} = -RT \ln K$ $K_{\rm p} = K_{\rm c} (RT)^{\Delta \rm n}$

Colligative properties $\pi = cRT$ p = kc $\Delta T_f = K_f m$

Acids and Bases

 $pK_{w} = pH + pOH = 14$ $pK_{w} = pK_{a} + pK_{b} = 14$ $pH = pK_{a} + \log\{[A^{-}] / [HA]\}$ Kinetics $t_{\frac{1}{2}} = \ln 2/k$ $k = Ae^{-Ea/RT}$ $\ln[A] = \ln[A]_o - kt$

Electrochemistry $\Delta G^{\circ} = -nFE^{\circ}$

 $E = E^{\circ} - (RT/nF) \ln Q$ $E^{\circ} = (RT/nF) \ln K$ Moles of $e^{-} = It/F$

Quantum Chemistry $E = hv = hc/\lambda$

A periodic table is printed on the other side of this data sheet. Atomic weights are included in the periodic table.

PERIODIC TABLE OF THE ELEMENTS

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 hydroge	Ň																2 HELIUM
H 1.008	;																He 4.003
	4 BERYLLIUM											5 BORON	6 CARBON	7 NITROGEN	8 oxygen	9 FLUORINE	10 NEON
Li	Be											В	С	Ν	0	F	Ne
6.941	9.012	-										10.81	12.01	14.01	16.00	19.00	20.18
11 sodium	12 magnesium											13 ALUMINIUM	14 SILICON	15 phosphorus	16 SULFUR	17 CHLORINE	18 ARGON
Na	Mg											Al	Si	Р	S	Cl	Ar
22.99	24.31		n	1	1	1	r					26.98	28.09	30.97	32.07	35.45	39.95
19 POTASSIU	20	21	22 TITANIUM	23	24	25 MANGANESE	26	27	28	29	30	31	32 GERMANIUM	33 ARSENIC	34	35 BROMINE	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.59	74.92	78.96	79.90	83.80
37 RUBIDIUM	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Ι	Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98.91]	101.07	102.91	106.4	107.87	112.40	114.82	118.69	121.75	127.60	126.90	131.30
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
CAESIUM	BARIUM		HAFNIUM Hf	TANTALUM Ta	TUNGSTEN	RHENIUM	OSMIUM	IRIDIUM	PLATINUM Pt		Hg	THALLIUM	РЬ	візмитн Ві	POLONIUM	ASTATINE	RADON Rn
132.9	1 137.34		178.49	180.95	183.85	186.2	190.2	192.22	195.09	196.97	200.59	204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
87	88	89-103	104	105	106	107	108	109									
FRANCIU	RADIUM		RUTHERFORDIUN Rf	DUBNIUM	SEABORGIUM So	BOHRIUM Bh	HASSIUM	MEITNERIUM Mt									
[223.0	1 [226.0]		[261]	[262]	[266]	[262]	[265]	[266]									
			L=]	l []	[[=]	[]	[]	[=]									
	57	7 5	8	59	60	61	62	63	64	6.	5 (56	67	68	69	70	71
LANTHA	NIDE LANTH	A CER	IUM PR.	rseodymium Pr	NEODYMIUM Nd	PROMETHIUM Pm	samarium Sm	EUROPIUM EU	GADOLINIT	текві Т	им dyse b I	ROSIUM H	olmium Ho	ERBIUM Er	THULIUM Tm	YTTERBIUM Yb	LUTETIUM

157.25

96 curium

Cm

[247.1]

151.96

95 Americium

Am

[243.1]

158.93

97 berkellium

Bk

[247.1]

162.50

98 CALIFORNIUM

Cf

[252.1]

164.93

99 Einsteinium

Es

[252.1]

167.26

100 fermium

Fm

[257.1]

168.93

101 mendelevium

Md

[256.1]

173.04

102 NOBELIUM

No

[259.1]

174.97

103 LAWRENCIUM

Lr

[260.1]

ACTINIDES

138.91

89 actinium

Ac

[227.0]

140.12

90 THORIUM

Th

232.04

140.91

91 protactinium

Pa

[231.0]

144.24

92 uranium

U

238.03

[144.9]

93 NEPTUNIUM

Np

[237.0]

150.4

94 plutonium

Pu

[239.1]

2