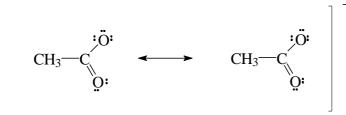
FUNDAMENTALS OF CHEMISTRY 1A (CHEM1001) - June 2005


2005-J-2

•

²³⁹₉₃Np

 $^{14}_{7}N$

When more than one Lewis structure can be drawn for a molecule, the true structure is an average (called a resonance hybrid) of all the structures drawn. In some cases one or more structures may be dominant contributors - in other cases there may be only 2 equal contributors. eg acetate ion

• aluminium

•
$$5.26 \times 10^{14} \text{ Hz}$$
 $3.49 \times 10^{-19} \text{ J}$

2005-J-3

•

Iodine consists of discrete I_2 molecules. The intermolecular forces between these I_2 units are weak dispersion forces, so the solid is soft with a low melting point. (The strength of the I-I bond is essentially irrelevant.) Diamond consists of a giant 3-dimensional array of carbon atoms in a tetrahedral arrangement. Each atom is covalently bonded to its neighbour to give one giant molecule (covalent network solid). The C-C covalent bond is very strong, so diamond is hard with a high melting point.

$\begin{bmatrix} H \\ I \\ H - N - H \\ I \\ H \end{bmatrix}^+$	tetrahedral	tetrahedral
÷F: ∣ ∶F⊂ ^B Ĕ:	trigonal planar	trigonal planar
: <u><u> </u></u>	tetrahedral	bent

2005-J-4

• B₅H₉

• potassium sulfate

 $CuCl_2$

sulfur tetrafluoride

 K_2CrO_4

2005-J-5

• Fe₂O₃(s) + 3CO(g) \rightarrow 2Fe(s) + 3CO₂(g) • 4.00 g 25.0 mL

2005-J-6

•	$NH_4NO_3(s) \rightarrow NH_4^+(aq) + NO_3^-(aq)$
	endothermic
	$+26.1 \text{ kJ mol}^{-1}$
•	aluminium
	Aluminium can absorb more heat per gram of metal than iron.

2005-J-7

• $2Al(s) + Fe_2O_3(s) \rightarrow Al_2O_3(s) \ 2Fe(s)$

559 g

• All reactants and products are in their standard states.

A reaction at equilibrium has not stopped - the rate of the forward reaction is equal to the rate of the backward reaction - a dynamic situation.

2005-J-8

11.0 atm

2005-J-9

• 409 kJ

• Zn(s), $Ag_2O(s)$

I It acts like a salt bridge allowing the migration of ions away from and towards the electrodes. OH⁻(aq) ions are produced at the cathode and consumed at the anode.

The overall cell reaction is $Zn(s) + Ag_2O(s) \rightarrow 2Ag(s) + ZnO(s)$ No ions with constantly changing concentrations appear, so the cell produces a constant voltage until one of the reactants is exhausted and it stops functioning.

2005-J-10

- $\frac{[Zn^{2+}]}{[Cr^{2+}]} = 4 \times 10^{-5}$
- Pb(s), $PbSO_4(s)$ is the anode.

Pb(s) + SO₄²⁻(aq) → PbSO₄(s) + 2e⁻ PbO₂(s), PbSO₄(s) is the cathode PbO₂(s) + 4H⁺(aq) + SO₄²⁻(aq) + 2e⁻ → PbSO₄(s) + 2H₂O

2005-J-11

• 0.045 M