22/01(a)

JUNE 2005

The University of Sydney

FUNDAMENTALS OF CHEMISTRY 1A - CHEM1001

FIRST SEMESTER EXAMINATION

CONFIDENTIAL

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY NAME	SID NUMBER	
OTHER NAMES	TABLE NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 20 pages of examinable material.
- Complete the written section of the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a •.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheet.
- Pages 16, 20 and 24 are for rough working only.

OFFICIAL USE ONLY

Multiple choice section

Short answer section

	Marks			
Page	Max	Gaine	d	Marker
12	8			
13	9			
14	4			
15	8			
17	7			
18	6			
19	3			
21	7			
22	7			
23	4			
Total	63			
Check Total				

CHEM1001	2005-J-2	2	June	2005	22/01(a)
Balance the following	ng nuclear reactions l	by identifying	the missing nucle	ar particle.	Marks 2
	$^{14}_{6}C \rightarrow$	+	⁰ ₋₁ e		
	$^{243}_{95}\text{Am} \rightarrow$	+	⁴ ₂ He		
• Briefly explain the or species that displays	concept of resonance s resonance.	in Lewis struc	tures. Include an	example of a	3
• What element has th	ne ground state electr	onic arrangem	ent of $1s^2 2s^2 2p^6$	$3s^2 3p^1?$	1
					_
• Calculate the freque	ency and energy of ye	llow light of w	vavelength 570 nm	n.	2
Frequency =		Energy =			

 Iodine is extreme these difference of the sector of the sector	is a soft, low-melting point solid wely high melting point. How does ifferences in properties?	while diamond is very h the bonding in each el	ement of the valence	Marks 3
snell el underli	ned atom and predict the geometry Lewis diagram	y of each species. Arrangement of	Geometry of species	-
H ₂ O	н−ö−н	tetrahedral	bent	
<u>N</u> H4 ⁺				
<u>B</u> F ₃				
<u>O</u> F ₂				

• Th B ₆	e element boron form H_{10} and $B_{10}H_{14}$. Wh	ns a series of hydri ich one of these hy	ides, which includes B_2H_6 , B_4H_{10} , B_5I adrides consists of 85.63% boron by n	H ₉ , nass?	Marks 2
			Answer:		
• Co	mplete the following	, table.			2
	Formula	Name			
	K_2SO_4				
		copper(II) chlorid	de		
	SF_4				
		potassium chrom	ate		

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

• Balance the following equation:	Marks
$Fe_2O_3(s) + CO(g) \rightarrow Fe(s) + CO_2(g)$	2
• Calculate the mass of sodium hydroxide required to make 500 mL of a 0.200 M aqueous solution.	6
Answer:	
What volume of the above solution would be required to neutralise 50.0 mL of 0.100 M hydrochloric acid solution?	

•	A 0.50 g sample of ammonium nitrate, $NH_4NO_3(s)$, was dissolved in 35.0 g of water in a coffee cup calorimeter. The temperature of the solution dropped from 22.7 to 21.6 °C. Write a balanced equation to describe the reaction in the calorimeter.	Marks 5
	Describe this process as either endothermic or exothermic.	
	Assuming a perfect calorimeter what is the heat of solution of ammonium nitrate, expressed in kJ mol ^{-1} ? Assume the density of the solution is 1.00 g mL ^{-1} and that the heat capacity of the solution is 4.18 J K ^{-1} g ^{-1} .	
•	Heat radiating fins are used to dissipate heat and prevent damage to electronic components. Is it better to make the fins out of aluminium or iron? Give reasons for your answer	2
	Data: Specific heat of Al = 0.900 J K ⁻¹ g ⁻¹ Specific heat of Fe = 0.444 J K ⁻¹ g ⁻¹	-

• Aluminium acts as a reducing agent in the thermite reaction where Fe ₂ O ₃ is reduced metallic iron. Write a balanced equation for the thermite reaction.	d to Marks 4
What is the maximum theoretical mass of Fe that can be produced when 270 g of A reacts with excess Fe_2O_3 in the thermite reaction?	41
Anower	
• What does the superscript " o " mean in the symbol ΔH°_{\circ} ?	1
	1
Briefly describe what is meant by "Dynamic Equilibrium"?	

•	A sealed 1.000 L flask at 30 °C contains air at a pressure of 1.000 atm. A 5.00 g sample of liquid water is injected into the flask and the flask heated to a temperature of 150 °C, causing the water to vaporise. What is the final pressure in the flask?	Marks 3
	Answer:]

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

Marks • Consider the following reaction. 4 $\Delta E = -10909 \text{ kJ mol}^{-1}$ $2C_8H_{18}(l) + 25O_2(g) \rightarrow 16CO_2(g) + 18H_2O(l)$ A mixture of C₈H₁₈ (10.00 g) and O₂ (30.00 g) is allowed to react. Assuming that the reaction goes to completion, how much energy will be produced? Answer: 3 • The half reactions describing the discharge of a silver-zinc cell are: $Zn(s) + 2OH^{-}(aq) \rightarrow ZnO(s) + H_2O(l) + 2e^{-}$ $Ag_2O(s) + H_2O(l) + 2e^- \rightarrow 2Ag(s) + 2OH^-(aq)$ List the chemical species that will be consumed as the battery discharges. Why is a saturated solution of KOH used in the battery? Why is the voltage in the silver-zinc cell constant during discharge?

CHEM1001	2005-J-10	June 2005	22/01(a)
Consider the follow:	ing cell reaction.		Marks
С	$r^{2+}(aq) + Zn(s) \iff Cr(s) +$	$Zn^{2+}(aq)$	
Use the Nernst equa which the cell poten	tion to calculate the ratio of cation tial, $E = 0$ V.	concentrations at 298 K for	
	Answer:		
• A lead-acid battery	has the following shorthand notation	on:	4
$Pb(s), PbSO_4(s)$	$ H^{+}(aq), SO_{4}^{2-}(aq) H^$	(aq) $ PbO_2(s), PbSO_4(s)$	
Which component o	of the battery is the anode?		
Give the balanced h	alf equation of the reaction that take	es place at the anode.	
Which component o	f the battery is the cathode?		
Give the balanced ha	alf equation of the reaction that take	es place at the cathode.	

Marks • At 800 °C, the value of the equilibrium constant, K_c , for the following equation is $1.245 \times 10^3 \text{ L mol}^{-1}$. 4 $2NO(g) + O_2(g) \implies 2NO_2(g)$ What is the equilibrium concentration of NO(g) at 800 °C if, at equilibrium, $[O_2(g)] = 0.0012 \text{ M} \text{ and } [NO_2(g)] = 0.055 \text{ M}?$ Answer: THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

CHEM1001 – FUNDAMENTALS OF CHEMISTRY 1A

DATA SHEET

Physical constants Avogadro constant, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$ Faraday constant, $F = 96485 \text{ C mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \text{ J s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \text{ m s}^{-1}$ Rydberg constant, $E_R = 2.18 \times 10^{-18} \text{ J}$ Boltzmann constant, $k_B = 1.381 \times 10^{-23} \text{ J K}^{-1}$ Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ $= 0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \text{ C}$ Mass of electron, $m_p = 1.6726 \times 10^{-27} \text{ kg}$ Mass of neutron, $m_p = 1.6749 \times 10^{-27} \text{ kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors 1 atm = 760 mmHg = 101.3 kPa 0 °C = 273 K 1 L = 10^{-3} m³ 1 Å = 10^{-10} m 1 eV = 1.602×10^{-19} J 1 Ci = 3.70×10^{10} Bq 1 Hz = 1 s⁻¹

Decimal fractions			Deci	Decimal multiples		
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol	
10^{-3}	milli	m	10^{3}	kilo	k	
10^{-6}	micro	μ	10^{6}	mega	М	
10^{-9}	nano	n	10 ⁹	giga	G	
10^{-12}	pico	р				

Standard Reduction Potential	ls, E°
Reaction	E° / V
$\operatorname{Co}^{3+}(\operatorname{aq}) + e^{-} \rightarrow \operatorname{Co}^{2+}(\operatorname{aq})$	+1.82
$Ce^{4+}(aq) + e^{-} \rightarrow Ce^{3+}(aq)$	+1.72
$Cl_2(g) + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2(g) + 4H^+(aq) + 4e^- \rightarrow 2H_2O(l)$	+1.23
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80
$\mathrm{Fe}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})$	+0.77
$\mathrm{Cu}^+(\mathrm{aq}) + \mathrm{e}^- \rightarrow \mathrm{Cu}(\mathrm{s})$	+0.53
$\operatorname{Cu}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cu}(s)$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2\mathrm{H}^{+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{g})$	0 (by definition)
$\mathrm{Fe}^{3+}(\mathrm{aq}) + 3\mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s})$	-0.04
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.24
$\operatorname{Co}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Co}(s)$	-0.28
$Fe^{2+}(aq) + 2e^- \rightarrow Fe(s)$	-0.44
$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Cr}(s)$	-0.74
$Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$	-0.76
$2H_2O(l) + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83
$\operatorname{Cr}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cr}(s)$	-0.89
$\mathrm{Al}^{3+}(\mathrm{aq}) + 3\mathrm{e}^{-} \rightarrow \mathrm{Al}(\mathrm{s})$	-1.68
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2.36
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71

CHEM1001 – FUNDAMENTALS OF CHEMISTRY 1A

Quantum Chemistry	Radioactivity								
$E = hv = hc/\lambda$	$t_{\frac{1}{2}} = \ln 2/\lambda$								
$\lambda = h/mv$	$A = \lambda N$								
$4.5k_{\rm B}T = hc/\lambda$	$\ln(N_0/N_t) = \lambda t$								
$E = Z^2 E_{\rm R}(1/n^2)$	14 C age = 8033 ln(A_0/A_t)								
Acids and Bases	Gas Laws								
$pK_{\rm w} = pH + pOH = 14.00$	PV = nRT								
$\mathbf{p}K_{\mathrm{w}} = \mathbf{p}K_{\mathrm{a}} + \mathbf{p}K_{\mathrm{b}} = 14.00$	$(P+n^2a/V^2)(V-nb) = nRT$								
$pH = pK_a + \log\{[A^-] / [HA]\}$									
Colligative properties	Kinetics								
$\pi = cRT$	$t_{1/2} = \ln 2/k$								
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$k = A e^{-Ea/RT}$								
$\mathbf{p} = k\mathbf{c}$	$\ln[A] = \ln[A]_{o} - kt$								
$\Delta T_{\rm f} = K_{\rm f} m$	$\lim_{k \to \infty} k_2 = E_a (1 - 1)$								
$\Delta T_{\rm b} = K_{\rm b} m$	$\frac{m}{k_1} = \frac{1}{R} \left(\frac{T_1}{T_1} - \frac{T_2}{T_2} \right)$								
Electrochemistry	Thermodynamics & Equilibrium								
$\Delta G^{\circ} = -nFE^{\circ}$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$								
Moles of $e^- = It/F$	$\Delta G = \Delta G^{\circ} + RT \ln Q$								
$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$	$\Delta G^{\circ} = -RT \ln K$								
$= E^{\circ} - (RT/nF) \times \ln Q$	$K_{\rm p} = K_{\rm c} \left(RT \right)^{\Delta n}$								
$E^{\circ} = (RT/nF) \times 2.303 \log K$									
$= (RT/nF) \times \ln K$									
$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$									
Polymers	Mathematics								
nl_0^2	$-b \pm \sqrt{b^2 - 4ac}$								
$R_{\rm g} = \sqrt{\frac{0}{6}}$	If $ax^2 + bx + c = 0$, then $x = \frac{c^2 - \sqrt{c^2}}{2a}$								
	$\ln x = 2.303 \log x$								

Useful formulas

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 нудкоден Н 1.008																	2 нешим Не 4.003
3 LITHIUM Li 6 941	4 BERYLLIUM Be 9.012											5 вогол В 10.81	6 CARBON C 12.01	7 NITROGEN N 14.01	8 0XYGEN 0 16.00	9 ^{FLUORINE} F 19.00	10 _{NEON} 20.18
11 sodium Na 22.99	12 MAGNESIUM Mg 24 31											13 ALUMINIUM Al 26.98	14 silicon Si 28.09	15 PHOSPHORUS P 30.97	16 SULFUR S 32.07	17 CHLORINE CI 35.45	18 ARGON Ar 30.05
19 ротаssium К 39.10	24.51 20 calcium Ca 40.08	21 scandium Sc 14.96	22 TITANIUM Ti 47.88	23 vanadium V 50.94	24 CHROMIUM Cr 52.00	25 MANGANESE Mn 54 94	26 IRON Fe	27 COBALT CO 58 93	28 Nickel Ni 58 69	29 COPPER Cu 63 55	30 ^{ZINC} Zn 65 39	31 GALLIUM Ga 60 72	32 GERMANIUM Ger 72 59	33 ARSENIC AS 74.92	32.07 34 selenium Se 78.96	35 BROMINE Br 70 90	36 KRYPTON KR 83 80
37 RUBIDIUM Rb 85.47	38 STRONTIUM ST 87.62	39 yttrium Y 88 91	40 zirconium Zr 91 22	41 NIOBIUM Nb 92 91	42 MOLYBDENUM MO 95 94	43 TECHNETIUM TC [98 91]	44 RUTHENIUM RU 101 07	45 кнодиим Rh 102 91	46 PALLADIUM Pd 106.4	47 silver Ag	48 CADMIUM Cd 112.40	49 NDIUM 114 82	50 50 51 50 118 69	51 ANTIMONY Sb 121.75	52 TELLURIUM Te 127.60	53 126.90	54 xenon Xe 131.30
55 CAESIUM CS 132 91	56 BARIUM Ba 137.34	57-71	72 HAFNIUM HIF	73 TANTALUM Ta 180.95	74 TUNGSTEN W 183.85	75 RHENIUM Re 186.2	76 озмиим Os 190.2	77 IRIDIUM Ir 192.22	78 PLATINUM Pt 195.09	79 GOLD Au 196.97	80 MERCURY Hg 200 59	81 THALLIUM TI 204 37	82 LEAD Pb 207.2	83 BISMUTH BI 208.98	84 POLONIUM PO	85 ASTATINE At	86 RADON Rn
87 FRANCIUM Fr [223.0]	88 RADIUM Ra [226.0]	89-103	104 RUTHERFORDI Rf [261]	105 DUBNIUM Db [262]	105.05 106 seaborgium Sg [266]	100.2 107 вонкіим Вh [262]	196.2 108 назятим НS [265]	109 меттлеким Мt [266]	175.07	190.97	200.33	201.37	201.2	200.90	[210.0]	[210.0]	
LANTHANID	DES 57 LANTHA L3 138	7 5 NUM CE a (91 14	58 RIUM F Ce 0.12	59 RASEODYMIUM Pr 140.91	60 NEODYMIUM Nd 144.24	61 PROMETHIUM Pm [144.9]	62 samarium Sm 150,4	63 еикоріим Еи 151,96	64 GADOLINIU Gdd 157.25	м 63 текви 5 158	5 UM DYS b	66 sprosium Dy 52,50	67 ноіміим Но 164.93	68 егвіим Ег 167.26	69 тношим Тт 168.93	70 ytterbium Yb 173.04	71 LUTETIUM Lu 174,97
ACTINIDE	S ACTIN	c 1 (.0] 232	DO DRIUM Th 2.04	91 PROTACTINIUM Pa [231.0]	92 URANIUM U 238.03	93 NEPTUNIUM Np [237.0]	94 PLUTONIUM Pu [239.1]	95 AMERICIUM Am [243.1]	96 CURIUM [247.1	97 BERKEL] [247	7 LIUM CAL K [.1] [2	98 IFORNIUM I Cf 52.1]	99 INSTEINIUM Es [252.1]	100 FERMIUM Fm [257.1]	101 менделечим Md [256.1]	102 Nobelium [259.1]	103 LAWRENCIUM Lr [260.1]

PERIODIC TABLE OF THE ELEMENTS

June 2005

CHEM1001 – FUNDAMENTALS OF CHEMISTRY 1A

22/01(b)