FUNDAMENTALS OF CHEMISTRY 1B (CHEM1002) - November 2010

•

It sublimes. Line A at 0.6 kPa (*i.e.* 600 Pa) crosses the solid/gas equilibrium line just below the triple point.

Line B on the phase diagram. Water is liquid in the range approx. 272 - 305 K.

2010-N-3

•

There are 4 Fe atoms in the unit cell, 1 in the centre and $\frac{1}{4}$ in the centre of each edge. 1 + (12 × $\frac{1}{4}$) = 4 Fe atoms per unit cell.

There are 4 O atoms in the unit cell, $\frac{1}{8}$ at each corner and $\frac{1}{2}$ in the centre of each face. (8 × $\frac{1}{8}$) + (6 × $\frac{1}{2}$) = 4 O atoms per unit cell. Ratio of Fe:O = 4:4. Therefore FeO. Coordination number of each ion is 6.

 Fe^{2+} : $Fe^{3+} = 1:2$

 Fe^{2+} has 6 *d* electrons, 4 are unpaired as shown below.

$\uparrow \downarrow \qquad \uparrow$	\uparrow	\uparrow	\uparrow
---------------------------------------	------------	------------	------------

 Fe^{3+} has 5 unpaired *d* electrons arranged in the 5 available *d* orbitals as shown below.

\uparrow	\uparrow	\uparrow	\uparrow	\uparrow
------------	------------	------------	------------	------------

2010-N-4

• 0.1 M to 0.01 M

No. Buffers contain a weak acid and its conjugate base. HCl is a strong acid and its conjugate base is Cl⁻, a very weak base. Any added H^+ will decrease the pH as it doesn't react with the Cl⁻. Any added OH⁻ will increase the pH as it reacts with the H⁺, not the weak acid as happens in the case of a buffer.

2.4

2010-N-5

- 0.01 M •
 - $3\times 10^{-17}\ M$
 - 100 %

2010-N-6

2.7 • 100 % 3 hours

2010-N-7

•

2-methyl-2-butene

2,4-dimethylpentan-2-ol

NO REACTION

2010-N-8

•

•	nucleophile	electrophile	tertiary (3°)
	nucleophile	electrophile	quaternary (4°)

2010-N-9

•

 $H_{2N} * H_{1} N * COOH$

Priorities at *1: $-NH_2 > -CONHR > -CH(CH_3)_2 > -H$ With H at back these groups go anticlockwise. Therefore (*S*)- configuration about *1. Priorities at *2: $-NHCOR > -COOH > -(CH_2)_4NH_2 > -H$ With H at front these groups go clockwise. Therefore, with H at back, they would go anticlockwise. Therefore (*S*)- configuration about *2.

•

The product absorbs strongly in the 1650-1800 cm^{-1} region. The intermediate alcohol absorbs strongly in the 3000-3300 cm^{-1} region. The starting material does not absorb strongly in either of these regions.

The starting material is symmetrical and has only 2 resonances whilst the product has 4 resonances.

2010-N-11

•

Add a solution of sodium hydrogenearbonate. The propionic acid will evolve lots of CO_2 bubbles. There will be no reaction with the acetone.