# FUNDAMENTALS OF CHEMISTRY 1B (CHEM1002) - November 2014 2014-N-2

•  $10^{-7}$  M 6.17 • 2.78 HC<sub>3</sub>H<sub>5</sub>O<sub>3</sub>(aq) + OH<sup>-</sup>(aq) → C<sub>3</sub>H<sub>5</sub>O<sub>3</sub><sup>-</sup>(aq) + H<sub>2</sub>O(l)

The solution contains the conjugate base of lactic acid: the solution is basic.

#### 2014-N-3

٠





Aspirin is absorbed in stomach. Acidic environment so is mainly in its protonated uncharged form.

Amphetamine is absorbed in intestine where it exists as uncharged unprotonated molecule.

#### 2014-N-4

2.8

 $C_9H_8O_4(s) + OH^-(aq) \rightarrow C_9H_7O_4^-(aq) + H_2O(l)$ 

Basic. The C<sub>9</sub>H<sub>7</sub>O<sub>4</sub><sup>-</sup>(aq) ion reacts with water (*i.e.* undergoes hydrolysis) to generate a small amount of OH<sup>-</sup> ions. The C<sub>9</sub>H<sub>7</sub>O<sub>4</sub><sup>-</sup>(aq) ion is a weak base, so the following equilibrium reaction lies very much in favour of the reactants.

 $C_9H_7O_4(aq) + H_2O(l) \iff C_9H_8O_4(aq) + OH(aq)$ 

### 2014-N-5

•

Fe(OH)<sub>3</sub>(s) → Fe<sup>3+</sup>(aq) + 3OH<sup>-</sup>(aq)  $1.1 \times 10^{-10}$  M 8.2  $6.8 \times 10^{-22}$  M

Dissolved CO<sub>2</sub> reacts with water to form H<sub>2</sub>CO<sub>3</sub> which is slightly acidic. H<sub>2</sub>CO<sub>3</sub>(aq)  $\rightleftharpoons$  H<sup>+</sup>(aq) + HCO<sub>3</sub><sup>-</sup>(aq) The increase in  $[H^+(aq)]$  results in a decrease in  $[OH^-(aq)]$  and hence (from Le Chatelier's principle) more  $Fe(OH)_3(s)$  will dissolve.

•



rhombic

It changes into the monoclinic form and then it melts.

3

rhombic, monoclinic and vapour (at 95.31 °C and  $5.1 \times 10^{-6}$  atm); monoclinic, liquid and vapour (at 115.18 °C and  $3.2 \times 10^{-5}$  atm); rhombic, monoclinic and liquid (at 153 °C and 1420 atm);

Rhombic is denser. If you start in the monoclinic region and increase the pressure at constant temperature *(i.e.* draw a vertical line upwards) you move into the rhombic region. Rhombic is thus the more stable form at higher pressures, so must be denser.

2014-N-7





### 2014-N-7 (cont.)

| pentanal | $Cr_2O_7^{2-}/H^+$                  |                                                                          |
|----------|-------------------------------------|--------------------------------------------------------------------------|
|          |                                     | $ \underbrace{\overset{O}{\underset{N}{}}}_{N} _{N} _{+} (CH_3)_2 NH_2 $ |
|          |                                     | 0<br>↓ 0<br>0<br>+ H0<br>↓ 0                                             |
|          | hot conc. KOH<br>in ethanol solvent |                                                                          |

#### 2014-N-8







4 Each isomer has 1 enantiomer and 2 diastereoisomers.

or



The hydrochloride salt is soluble in water, which generally means better bioavailability.

Salt will have better stability - amines prone to aerial oxidation.

•

## $C_{10}H_{18}O$

(R)-enantiomer

tertiary alcohol, alkene

No. One end of each double bond has two identical groups (methyl or hydrogen) attached to it.



no reaction





2014-N-10

•





•





2014-N-12

•





The OH on the last stereogenic carbon on the Fischer projection (i.e. the third carbon from the top) is on the right hand side.