Topics in the November 2006 Exam Paper for CHEM1002

Click on the links for resources on each topic.

2006-N-2:

2006-N-3:

- Strong Acids and Bases
- Weak Acids and Bases

2006-N-4:

- Weak Acids and Bases
- Calculations Involving pKa

2006-N-5:

Coordination Chemistry

2006-N-6:

- Alkenes
- Alcohols
- Organic Halogen Compounds

2006-N-7:

- Representations of Molecular Structure
- Stereochemistry

2006-N-8:

- Alcohols
- Amines
- Aldehydes and Ketones
- Carboxylic Acids and Derivatives

2006-N-9:

Stereochemistry

The University of Sydney

FUNDAMENTALS OF CHEMISTRY 1B - CHEM1002

SECOND SEMESTER EXAMINATION

CONFIDENTIAL

NOVEMBER 2006

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY	SID	
NAME	NUMBER	
OTHER	TABLE	
NAMES	NUMBER	

INSTRUCTIONS TO CANDIDATES

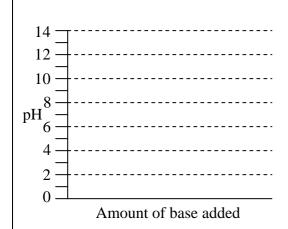
- All questions are to be attempted. There are 19 pages of examinable material.
- Complete the written section of the examination paper in **INK**.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a •.
- Electronic calculators, including programmable calculators, may be used.
 Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheet.
- Pages 16, 18, 21 and 24 are for rough working only.

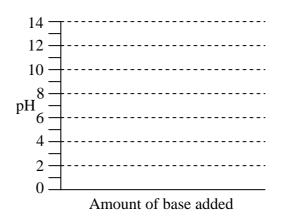
OFFICIAL USE ONLY

Multiple choice section

		Marks
Pages	Max	Gained
2-12	50	

Short answer section


		Marks		
Page	Max	Gaine	d	Marker
13	4			
14	9			
15	6			
17	6			
19	8			
20	5			
22	6			
23	6			
Total	50			


CHEM1002 2006-N-2 November 2006 22/02(b)

•	Limestone caves can be found near Sydney. How have these caves been formed? Use appropriate chemical equations in your explanation.	Marks 4
	Stalactites and stalagmites can be found in many limestone caves. How do these form? Use appropriate chemical equations in your explanation.	

• The titration curves for a titration of a weak acid with a strong base and for a strong acid with a strong base are distinctly different. Draw a diagram for each case.

Marks 7

List the main differences.

Explain these differences.

• What is the difference between the 'end point' and the 'equivalence point' in a titration.

2

CHEM1002	2006-N-4	November 2006	22/02
• What is the pH of a 0	0.020 M solution of HF? The p K_a of	FHF is 3.17.	Marks 2
			_
	pH =		2
• What is the pH of a sacetate? The pK_a of	solution that is 0.075 M in acetic acid CH_3COOH is 4.76 .	d and 0.150 M in sodium	2
	pH =		
• What is the pH of a 0	0.010 M solution of Ba(OH) ₂ ?		2

pH =

CHEM1002 2006-N-5 November 2006 22/02(b)

• Complete the following table.

Marks 6

Formula	Oxidation state of transition metal	Coordination number of transition metal	Number of <i>d</i> -electrons in transition metal	Species formed upon dissolving in water
Na ₂ [Ni(CN) ₄]				
[Cr(NH ₃) ₅ Cl]Cl ₂				
[Cu(en) ₃]Br ₂				

 $en = ethylenediamine = NH_2CH_2CH_2NH_2$

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

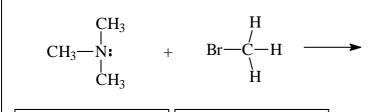
Marks 8

• Give the name of the starting material where indicated and the constitutional formula of the major organic product formed in each of the following reactions.

$$\begin{array}{c|c} & Br_2 \\ \hline & CCl_4 \text{ (solvent)} \end{array}$$

Name:

$$Cr_2O_7^{2\Theta}/H^{\oplus}$$


Name:

$$\begin{array}{c}
\text{conc. } H_2SO_4 \\
\text{heat}
\end{array}$$

Name:

• Classify the starting materials for the following reaction as nucleophile or electrophile in the boxes provided and draw the structure of the product.

Marks 3

• Draw the constitutional formula for each of the following compounds.

2

(E)-5-methylhex-2-ene

cis-1,2-dichlorocyclopentane

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

• Consider the following reaction sequence.

Marks 6

B

1) LiAlH₄
2) H[®]/H₂O

reagent A

OH

NaOH

C

reagent D

$$\frac{\text{excess}}{\text{H}_2\text{NCH}_3}$$
 $\frac{\text{Cl}}{\text{CH}_3\text{OH}}$

F

2006-N-8

Give the reagents **A** and **D** and draw the structures of the major organic products, **B**, **C**, **E** and **F**, formed in these reactions.

A	D
В	E
С	F

Phenylalanine is a commonly produce	a naturally occurring ed in nature.	amino acid.	Only the	e enantiome	er (X) is	Marks 6
	\mathbf{X})	H ₂ N O)			
What is the molecu	ular formula of (X) ?					
List the substituent according to the se	ts attached to the stereo	ogenic centre in	n descend	ing order of	priority	
highest priority				lowest	priority	
What is the absolute stereochemistry of (\mathbf{X}) ? Write (R) or (S) .						
Name the function	al groups, highlighted l	by the boxes a	and b , pr	esent in (X)	•	
a =		b =				

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

CHEM1002 - CHEMISTRY 1B

DATA SHEET

Physical constants

Avogadro constant, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

Faraday constant, $F = 96485 \text{ C mol}^{-1}$

Planck constant, $h = 6.626 \times 10^{-34} \,\mathrm{J s}$

Speed of light in vacuum, $c = 2.998 \times 10^8 \text{ m s}^{-1}$

Rydberg constant, $E_R = 2.18 \times 10^{-18} \text{ J}$

Boltzmann constant, $k_{\rm B} = 1.381 \times 10^{-23} \, \mathrm{J \ K^{-1}}$

Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$

 $= 0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}$

Charge of electron, $e = 1.602 \times 10^{-19} \text{ C}$

Mass of electron, $m_e = 9.1094 \times 10^{-31} \text{ kg}$

Mass of proton, $m_p = 1.6726 \times 10^{-27} \text{ kg}$

Mass of neutron, $m_{\rm n} = 1.6749 \times 10^{-27} \, {\rm kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 $^{\circ}$ C = 24.5 L

Volume of 1 mole of ideal gas at 1 atm and $0 \, ^{\circ}\text{C} = 22.4 \, \text{L}$

Density of water at 298 K = 0.997 g cm⁻³

Conversion factors

1 atm = 760 mmHg = 101.3 kPa

 $0 \, ^{\circ}\text{C} = 273 \, \text{K}$

$$1 L = 10^{-3} \text{ m}^3$$

$$1 \text{ Å} = 10^{-10} \text{ m}$$

$$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$$

$$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$$

$$1 \text{ Hz} = 1 \text{ s}^{-1}$$

Decimal fractions			Deci	Decimal multiples			
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol		
10^{-3}	milli	m	10^{3}	kilo	k		
10^{-6}	micro	μ	10^{6}	mega	M		
10^{-9}	nano	n	10^{9}	giga	G		
10^{-12}	pico	p					

CHEM1002 - CHEMISTRY 1B

Standard Reduction Potentials, E°

Reaction	E° / V
$\mathrm{Co}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})$	+1.82
$Ce^{4+}(aq) + e^{-} \rightarrow Ce^{3+}(aq)$	+1.72
$Au^{3+}(aq) + 3e^{-} \rightarrow Au(s)$	+1.50
$\text{Cl}_2 + 2\text{e}^- \rightarrow 2\text{Cl}^-(\text{aq})$	+1.36
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Br_2 + 2e^- \rightarrow 2Br^-(aq)$	+1.10
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$	+0.80
$Fe^{3+}(aq) + e^{-} \rightarrow Fe^{2+}(aq)$	+0.77
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53
$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$	+0.34
$Sn^{4+}(aq) + 2e^{-} \rightarrow Sn^{2+}(aq)$	+0.15
$2H^+(aq) + 2e^- \rightarrow H_2(g)$	0 (by definition)
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$	-0.04
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2\operatorname{e}^{-} \to \operatorname{Sn}(\operatorname{s})$	-0.14
$Ni^{2+}(aq) + 2e^- \rightarrow Ni(s)$	-0.24
$Co^{2+}(aq) + 2e^{-} \rightarrow Co(s)$	-0.28
$Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$	-0.44
$Cr^{3+}(aq) + 3e^- \rightarrow Cr(s)$	-0.74
$\operatorname{Zn}^{2+}(\operatorname{aq}) + 2\operatorname{e}^{-} \to \operatorname{Zn}(\operatorname{s})$	-0.76
$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83
$Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$	-0.89
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.68
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2.36
$Na^{+}(aq) + e^{-} \rightarrow Na(s)$	-2.71
$Ca^{2+}(aq) + 2e^{-} \rightarrow Ca(s)$	-2.87
$Li^+(aq) + e^- \rightarrow Li(s)$	-3.04

CHEM1002 - CHEMISTRY 1B

Useful formulas

Quantum Chemistry	Electrochemistry
$E = hv = hc/\lambda$	$\Delta G^{\circ} = -nFE^{\circ}$
$\lambda = h/mv$	$Moles\ of\ e^- = It/F$
$4.5k_{\rm B}T = hc/\lambda$	$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$
$E = Z^2 E_{\rm R}(1/n^2)$	$= E^{\circ} - (RT/nF) \times \ln Q$
$\Delta x \cdot \Delta(mv) \ge h/4\pi$	$E^{\circ} = (RT/nF) \times 2.303 \log K$
$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	$= (RT/nF) \times \ln K$
	$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$
Acids and Bases	Gas Laws
$pK_{w} = pH + pOH = 14.00$	PV = nRT
$pK_{\rm w} = pK_{\rm a} + pK_{\rm b} = 14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$
$pH = pK_a + log\{[A^-] / [HA]\}$	
Colligative properties	Kinetics
$\pi = cRT$	$t_{1/2} = \ln 2/k$
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$k = Ae^{-E_{A}/RT}$
p = kc	$ \ln[A] = \ln[A]_{o} - kt $
$\Delta T_{ m f} = K_{ m f} m$	$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$
$\Delta T_{\rm b} = K_{\rm b} m$	$k_1 R T_1 T_2$
Radioactivity	Thermodynamics & Equilibrium
$t_{1/2} = \ln 2/\lambda$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$
$A = \lambda N$	$\Delta G = \Delta G^{\circ} + RT \ln Q$
$\ln(N_0/N_{\rm t}) = \lambda t$	$\Delta G^{\circ} = -RT \ln K$
14 C age = 8033 ln(A_0/A_t)	$K_{\rm p} = K_{\rm c} (RT)^{\Delta n}$
Polymers	Mathematics
$R_{\rm g} = \sqrt{\frac{n l_0^2}{6}}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
	$ \ln x = 2.303 \log x $

PERIODIC TABLE OF THE ELEMENTS

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1																•	2
HYDROGEN																	нелим Не
1.008		_															4.003
3	4											5	6	7	8	9	10
Lithium	Beryllium Be											BORON B	CARBON	NITROGEN N	OXYGEN	FLUORINE	Neon Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	MAGNESIUM Mg											ALUMINIUM	Silicon	PHOSPHORUS P	SULFUR	CILORINE	Argon Ar
22.99	24.31											26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
POTASSIUM TZ	CALCIUM	SCANDIUM	TITANIUM Ti	VANADIUM V	CHROMIUM	MANGANESE	IRON	COBALT	NICKEL T.º	COPPER	ZINC	GALLIUM	GERMANIUM	ARSENIC	SELENIUM Se	BROMINE	KRYPTON
K 39.10	Ca 40.08	Sc 44.96	47.88	V 50.94	Cr 52.00	Mn 54.94	Fe 55.85	Co 58.93	Ni 58.69	Cu 63.55	Zn 65.39	Ga 69.72	Ge 72.59	As 74.92	78.96	Br 79.90	Kr 83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
RUBIDIUM	STRONTIUM	YTTRIUM	ZIRCONIUM	NIOBIUM	MOLYBDENUM	TECHNETIUM	RUTHENIUM	RHODIUM	PALLADIUM	SILVER	CADMIUM	INDIUM	TIN	ANTIMONY	TELLURIUM	IODINE	XENON
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98.91]	101.07	102.91	106.4	107.87	112.40	114.82	118.69	121.75	127.60	126.90	131.30
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
CAESIUM CS	Barium Ba		HAFNIUM Hf	Tantalum Ta	W	RHENIUM Re	OSMIUM	IRIDIUM Ir	PLATINUM Pt	Au	Hg	THALLIUM T1	Pb	Bismuth Bi	POLONIUM Po	ASTATINE At	RADON Rn
	Da		111							196.97			207.2	208.98			[222.0]
132 91			178 49	180 95	183 85	1862	190.2	1 192 22	195 09						1 171000		
132.91	137.34	90 103	178.49	180.95	183.85	186.2	190.2	192.22	195.09	190.97	200.59	204.37	201.2	200.90	[210.0]	[210.0]	[222.0]
132.91 87 FRANCIUM		89-103	178.49 104 RUTHERFORDIUM	180.95 105 DUBNIUM	183.85 106 seaborgium	186.2 107 BOHRIUM	190.2 108 hassium	192.22 109 MEITNERIUM	195.09	190.97	200.39	204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
87	137.34 88	89-103	104	105	106 SEABORGIUM	107	108	109	195.09	190.97	200.39	204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
87 FRANCIUM	137.34 88 RADIUM	89-103	104 RUTHERFORDIUM	105 DUBNIUM	106	107	108 hassium	109 meitnerium	195.09	190.97	200.39	204.37	207.2	200.96	[210.0]	[210.0]	[222.0]

	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
LANTHANIDES	LANTHANUM	CERIUM	PRASEODYMIUM	NEODYMIUM	PROMETHIUM	SAMARIUM	EUROPIUM	GADOLINIUM	TERBIUM	DYSPROSIUM	HOLMIUM	ERBIUM	THULIUM	YTTERBIUM	LUTETIUM
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	138.91	140.12	140.91	144.24	[144.9]	150.4	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
ACTINIDES	89 actinium	90 THORIUM	91 PROTACTINIUM	92 URANIUM	93 NEPTUNIUM	94 PLUTONIUM	95 AMERICIUM	96 curium	97 BERKELLIUM	98 CALIFORNIUM	99 EINSTEINIUM	100 FERMIUM	101 mendelevium	102 NOBELIUM	103 LAWRENCIUM
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	[227.0]	232.04	[231.0]	238.03	[237.0]	[239.1]	[243.1]	[247.1]	[247.1]	[252.1]	[252.1]	[257.1]	[256.1]	[259.1]	[260.1]