Topics in the November 2007 Exam Paper for CHEM1002

Click on the links for resources on each topic.

2007-N-2:

- Solubility Equilibrium
- Metal Complexes

2007-N-3:

• Kinetics

2007-N-4:

- Weak Acids and Bases
- Calculations Involving pKa

2007-N-5:

- Weak Acids and Bases
- Periodic Trends
- Coordination Chemistry

2007-N-6:

- Alkenes
- Alcohols
- Organic Halogen Compounds

2007-N-7:

- Representations of Molecular Structure
- Stereochemistry

2007-N-8:

- Alcohols
- Amines
- Organic Halogen Compounds
- Aldehydes and Ketones
- Carboxylic Acids and Derivatives

2007-N-9:

- Representations of Molecular Structure
- Stereochemistry
- Carboxylic Acids and Derivatives

2007-N-10:

• Synthetic Strategies

22/02(a)

The University of Sydney

FUNDAMENTALS OF CHEMISTRY 1B - CHEM1002

SECOND SEMESTER EXAMINATION

CONFIDENTIAL

NOVEMBER 2007

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY NAME	SID NUMBER	
OTHER NAMES	TABLE NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 18 pages of examinable material.
- Complete the written section of the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a •.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheet.
- Pages 14, 16, 19, 23 and 24 are for rough working only.

OFFICIAL USE ONLY

Multiple choice section

Short answer section

	Marks			
Page	Max	Gained		Marker
11	8			
12	4			
13	8			
15	10			
17	8			
18	7			
20	6			
21	7			
22	6			
Total	64			

Define what is meant by an "allotrope". Give an example of a <i>pair</i> of allotropes involving (i) carbon and (ii) oxygen.	Marl 3
The K_{sp} of Fe(OH) ₃ is 2.0×10^{-39} M ⁴ . What is the solubility of Fe(OH) ₃ in g L ⁻¹ ?	5
A newer:	
What effect does lowering the pH have on the solubility of Fe(OH). ² Explain your	
answer.	

Marks • The following data were obtained for the reaction between gaseous nitric oxide and 4 hydrogen at 1280 °C. $2NO(g)+\ 2H_2(g)\ \rightarrow\ N_2(g)+\ 2H_2O(g)$ Experiment INITIAL REACTION RATE INITIAL [NO] INITIAL [H₂] $(M \min^{-1})$ number (M) (M) $2.0 imes 10^{-3}$ 1.3×10^{-5} 5.0×10^{-3} 1 1.0×10^{-2} $2.0 imes 10^{-3}$ $5.0 imes 10^{-5}$ 2 1.0×10^{-2} 4.0×10^{-3} 1.0×10^{-4} 3 Deduce the rate law for this reaction and calculate the value of the rate constant.

RATE LAW	RATE CONSTANT
Answer:	Answer:

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

Solution A consists of a 0.50 M aqueous Solution A. The pK_a of HF is 3.17.	s solution of HF at 25 °C. Calculate the pH of	
	pH =	
At 25 °C, 1.00 L of Solution B consists	of 12.97 g of lithium fluoride, LiF, dissolved	
n water. Calculate the pH of Solution E	3.	_
	pH =	-
Solution B (1.00 L) is poured into Soluti 25 °C. Calculate the pH of the final solution	ion A (1.00 L) and allowed to equilibrate at ution.	
	pH =	
f you wanted to adjust the pH of the mi	xture of Solution A and	1

CHEM1002		2007-N-5			22/02(a
• Briefly explain why H ₂	S is a strong	er Brønsted aci	d than H ₂ O.		Marks 2
• Compounds of <i>d</i> -block	elements ar	e frequently par	amagnetic. Us	ing the box notation	2
to represent atomic orb	itals, accoun	t for this proper	ty in compound	ls of Ni ²⁺ .	_
• Complete the following	g table.				6
Formula	Oxidation state of transition metal	Coordination number of transition metal	Number of <i>d</i> -electrons in the complex ion	Species formed upon dissolving in water	
K ₃ [Mn(CN) ₆]					
[Ru(NH ₃) ₅ (OH ₂)](NO ₃) ₂					
[Cr(en) ₃]Cl ₃					
en = ethylenediamin	$he = NH_2CH_2$	2CH ₂ NH ₂	1		

Marks • Classify the starting materials for each of the following reactions as nucleophile or 4 electrophile in the boxes provided and indicate with $\delta \oplus$ and $\delta \ominus$ the polarisation of the H–Br and C–Br bonds in the starting materials. + $\operatorname{Br}^{\ominus}$ \longrightarrow ∖⊕ + $H \longrightarrow Br \longrightarrow$ Br Η Θ ĊH3 CH_3 Br | ⊕` CH₃ H₃C Br H₃C +Η CH₃ 3 • Draw the constitutional formula for each of the following compounds. (Z)-4-methylhex-2-ene trans-1,3-dichlorocyclohexane (R)-butan-2-ol

CHEM1002 2	007-N-9	22/02(a)
 Dopa is a non-proteinogenic amino acid enantiomer (X) is effective in restoring highly toxic. 	l used to treat Parkinson's disease. Only the nerve function. The other enantiomer is	Marks 7
HO HO	$\begin{array}{c} H_2N H \\ OH \\ O \\ D \\ D$	
What is the molecular formula of (X)?		
List the substituents attached to the ster according to the sequence rules.	eogenic centre in descending order of priority	
highest priority	lowest priority	-
What is the absolute stereochemistry of	(X)? Write (<i>R</i>) or (<i>S</i>).	_
Name the functional groups, highlighted	d by the boxes a and b , present in (X).	
a =	b =	
Give the constitutional formula of the NaHCO ₃ .	product obtained when (X) is treated with	

Marks • Show clearly the reagents you would use to carry out the following chemical 6 conversion. Exactly one intermediate compound and hence two steps are required. Give the constitutional formula of the intermediate compound. How could you distinguish between the starting material, the intermediate compound and the final product using infrared spectroscopy?

CHEM1002 - CHEMISTRY 1B

DATA SHEET

Physical constants Avogadro constant, $N_{\rm A} = 6.022 \times 10^{23} \text{ mol}^{-1}$ Faraday constant, $F = 96485 \text{ C mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \text{ J s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \text{ m s}^{-1}$ Rydberg constant, $E_{\rm R} = 2.18 \times 10^{-18} \text{ J}$ Boltzmann constant, $k_{\rm B} = 1.381 \times 10^{-23} \text{ J K}^{-1}$ Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ $= 0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \text{ C}$ Mass of electron, $m_{\rm p} = 1.6726 \times 10^{-27} \text{ kg}$ Mass of neutron, $m_{\rm n} = 1.6749 \times 10^{-27} \text{ kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors 1 atm = 760 mmHg = 101.3 kPa 0 °C = 273 K 1 L = 10^{-3} m³ 1 Å = 10^{-10} m 1 eV = 1.602×10^{-19} J 1 Ci = 3.70×10^{10} Bq 1 Hz = 1 s⁻¹

Decimal fractions

Fraction	Prefix	Symbol
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	р

Decimal multiples

Multiple	Prefix	Symbol
10^{3}	kilo	k
10^{6}	mega	Μ
10^{9}	giga	G

CHEM1002 - CHEMISTRY 1B

Standard Reduction Potentials, E°

Reaction	E° / V
$S_2O_8^{2-} + 2e^- \rightarrow 2SO_4^{2-}$	+2.01
$\operatorname{Co}^{3+}(\operatorname{aq}) + e^{-} \rightarrow \operatorname{Co}^{2+}(\operatorname{aq})$	+1.82
$\operatorname{Ce}^{4+}(\operatorname{aq}) + \operatorname{e}^{-} \rightarrow \operatorname{Ce}^{3+}(\operatorname{aq})$	+1.72
$\operatorname{Au}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Au}(s)$	+1.50
$Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Br_2 + 2e^- \rightarrow 2Br^-(aq)$	+1.10
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80
$\mathrm{Fe}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})$	+0.77
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53
$\operatorname{Cu}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cu}(s)$	+0.34
$\mathrm{Sn}^{4+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{Sn}^{2+}(\mathrm{aq})$	+0.15
$2H^+(aq) + 2e^- \rightarrow H_2(g)$	0 (by definition)
$\operatorname{Fe}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Fe}(s)$	-0.04
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.24
$\operatorname{Co}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Co}(s)$	-0.28
$\operatorname{Fe}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Fe}(s)$	-0.44
$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Cr}(s)$	-0.74
$\operatorname{Zn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Zn}(s)$	-0.76
$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83
$\operatorname{Cr}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cr}(s)$	-0.89
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.68
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2.36
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71
$Ca^{2+}(aq) + 2e^{-} \rightarrow Ca(s)$	-2.87
$\text{Li}^+(\text{aq}) + e^- \rightarrow \text{Li}(s)$	-3.04

CHEM1002 - CHEMISTRY 1B

Useful formulas

Quantum Chemistry	Electrochemistry
$E = hv = hc/\lambda$	$\Delta G^{\circ} = -nFE^{\circ}$
$\lambda = h/mv$	Moles of $e^- = It/F$
$4.5k_{\rm B}T = hc/\lambda$	$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$
$E = -Z^2 E_{\rm R}(1/n^2)$	$= E^{\circ} - (RT/nF) \times \ln Q$
$\Delta x \cdot \Delta(mv) \ge h/4\pi$	$E^{\circ} = (RT/nF) \times 2.303 \log K$
$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	$= (RT/nF) \times \ln K$
	$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$
Acids and Bases	Gas Laws
$pK_{\rm w} = pH + pOH = 14.00$	PV = nRT
$pK_{\rm w} = pK_{\rm a} + pK_{\rm b} = 14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$
$pH = pK_a + \log\{[A^-] / [HA]\}$	
Colligative properties	Kinetics
$\pi = cRT$	$t_{\frac{1}{2}} = \ln 2/k$
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$k = A e^{-Ea/RT}$
$\mathbf{p} = k\mathbf{c}$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_{\rm o} - kt$
$\Delta T_{ m f} = K_{ m f} m$	$\ln \frac{k_{2}}{k_{2}} = \frac{E_{a}}{k_{1}} \left(\frac{1}{k_{1}} - \frac{1}{k_{1}} \right)$
$\Delta T_{\rm b} = K_{\rm b} m$	$k_1 R T_1 T_2$
Radioactivity	Thermodynamics & Equilibrium
$t_{1/2} = \ln 2/\lambda$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$
$A = \lambda N$	$\Delta G = \Delta G^{\circ} + RT \ln Q$
$\ln(N_0/N_t) = \lambda t$	$\Delta G^{\circ} = -RT \ln K$
14 C age = 8033 ln(A_0/A_t) years	$K_{\rm p} = K_{\rm c} \left(RT ight)^{\Delta n}$
Miscellaneous	Mathematics
$A = -\log_{10} \frac{I}{I_0}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
$A = \varepsilon c l$	$\ln x = 2.303 \log x$
$E = -A \frac{e^2}{4\pi\varepsilon_0 r} N_{\rm A}$	

	18	Ь)
	2 HELIUM	С
	не 4.003	HE
E	10 NEON	M10
)	Ne 20.18	02 -
Æ	18 Argon	FUN
5	Ar 39.95	NDA
E	36 krypton	ME
)	Kr 83.80	VTA
	54 xenon	LS C
0	Xe 131.30)F C
E	86 RADON	HEN
0]	Rn [222.0]	MIST
		ſRY
		1 B

PERIODIC TABLE OF THE ELEMENTS

1	2	3	4	5	6	7	8	9	10	11	1	2	13	14	15	16	17	18
1 HYDROGEN																		2 HELIUM
Η																		He
1.008		_																4.003
3	4												5	6	7	8	9	10
LITHIUM T;	BERYLLIUM												BORON	CARBON	NITROGEN	OXYGEN	FLUORINE	NEON No
6 .941	9.012												D 10.81	12.01	14.01	16.00	19.00	20.18
11	12	-											13	14	15	16	17	18
SODIUM	MAGNESIUM												ALUMINIUM	SILICON	PHOSPHORUS	SULFUR	CHLORINE	ARGON
IN a 22.99	1 VIg 24.31												AI 26.98	SI 28.09	P 30.97	S 32.07	CI 35.45	Ar 39.95
19	20	21	22	23	24	25	26	27	28	29	3	30	31	32	33	34	35	36
POTASSIUM	CALCIUM	SCANDIUM	TITANIUM	VANADIUM	CHROMIUM	MANGANESE	IRON	COBALT	NICKEL	COPPER	z	INC	GALLIUM	GERMANIUM	ARSENIC	SELENIUM	BROMINE	KRYPTON
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Ż	2n	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65	0.39	69.72	72.59	/4.92	/8.96	/9.90	83.80
3 / RUBIDIUM	38 strontium	39 yttrium	40 zirconium	41 NIOBIUM	4Z MOLYBDENUM	43 TECHNETIUM	44 RUTHENIUM	45 RHODIUM	40 palladium	4 / SILVER	CAD	Нð мим	49 INDIUM	50 TIN	J I ANTIMONY	JZ tellurium	JJ IODINE	D4 xenon
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	0	Cd	In	Sn	Sb	Te	Ι	Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98.91]	101.07	102.91	106.4	107.87	112	2.40	114.82	118.69	121.75	127.60	126.90	131.30
55 CAESIUM	56 BARIUM	57-71	72	73	74 TUNGSTEN	75 RHENIUM	76 05MIUM	77 IRIDIUM	78 Platinum	79	8 MER	80 RCURY	81 THALLIUM	82 LEAD	83 BISMUTH	84	85 ASTATINE	86 RADON
Cs	Ba		Hf	Та	W	Re	Os	Ir	Pt	Au	E	Ig	TI	Pb	Bi	Ро	At	Rn
132.91	137.34		178.49	180.95	183.85	186.2	190.2	192.22	195.09	196.97	200	0.59	204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
87	88 BADUM	89-103	104	105	106	107	108	109	110	111 POENTCENIU								
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg								
[223.0]	[226.0]		[261]	[262]	[266]	[262]	[265]	[266]	[271]	[272]								
	57	7	58	59	60	61	62	63	64	e	55	66	5	67	68	69	70	71
LANTHANIDE	ES LANTHA		PRA	Pr Pr	NEODYMIUM Nd	PROMETHIUM Pm	SAMARIUM	EUROPIUM	GADOLINI	UM TEI	rbium Ch	DYSPROS DYSPROS	SIUM H		ERBIUM Er	THULIUM Tm	VTTERBIUM Vh	LUTETIUM
	138.	91 14	0.12 1	40.91	144.24	[144.9]	150.4	151.96	157.2	5 15	8.93	162.	50 1	64.93	167.26	168.93	173.04	174.97
	89) (90	91	92	93	94	95	96	9	97	- 98	}	99	100	101	102	103
ACTINIDES	ACTIN	им тн	ORIUM PRO	TACTINIUM Do	URANIUM	NEPTUNIUM	PLUTONIUM	AMERICIUM		I BERK	ELLIUM	CALIFOR	NIUM EIN		FERMIUM	MENDELEVIUM	NOBELIUM	LAWRENCIUM
	A		μ 2 04 Γ	ra 231.01	U 238.03	1 NP	ru [239_1]	AM [243.1]	[247]	1 1 11 [2/)K 17 11	[252	L 11 13	ES	r m [257-1]	1 VIQ [256.1]	1 NO [259_1]	[260 1]
		.0] 23	2.04	251.0]	230.05	[237.0]	[237.1]	[243.1]	[247.	·] [2 ⁶	r/.1]	[232	••] [4		[237.1]	[230.1]	[237.1]	[200.1]