Topics in the November 2008 Exam Paper for CHEM1002

Click on the links for resources on each topic.

2008-N-2:

- Metal Complexes
- Strong Acids and Bases
- Weak Acids and Bases

2008-N-3:

• Physical States and Phase Diagrams

2008-N-4:

Kinetics

2008-N-5:

- Weak Acids and Bases
- Calculations Involving pKa

2008-N-6:

Solubility Equilibrium

2008-N-7:

- Alkenes
- Alcohols
- Organic Halogen Compounds
- Carboxylic Acids and Derivatives

2008-N-8:

- Alkenes
- Organic Halogen Compounds

2008-N-9:

- Alkenes
- Alcohols
- Amines
- Organic Halogen Compounds
- Aldehydes and Ketones
- Carboxylic Acids and Derivatives

2008-N-10:

- Alkenes
- Structural Determination
- Alcohols
- Organic Halogen Compounds
- Synthetic Strategies

2008-N-11:

- Structural Determination
- Stereochemistry

2008-N-12:

- Stereochemistry
- Carboxylic Acids and Derivatives

22/02(a)

The University of Sydney

FUNDAMENTALS OF CHEMISTRY 1B - CHEM1002

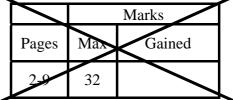
SECOND SEMESTER EXAMINATION

CONFIDENTIAL

NOVEMBER 2008

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS


FAMILY NAME	SID NUMBER	
OTHER NAMES	TABLE NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 19 pages of examinable material.
- Complete the written section of the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a •.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheet.
- Pages 14, 16, 20 and 24 are for rough working only.

OFFICIAL USE ONLY

Multiple choice section

Short answer section

		Marks		
Page	Max	Gaine	d	Marker
10	8			
11	6			
12	4			
13	6			
15	8			
17	8			
18	6			
19	6			
21	5			
22	7			
23	23 4			
Total	68			

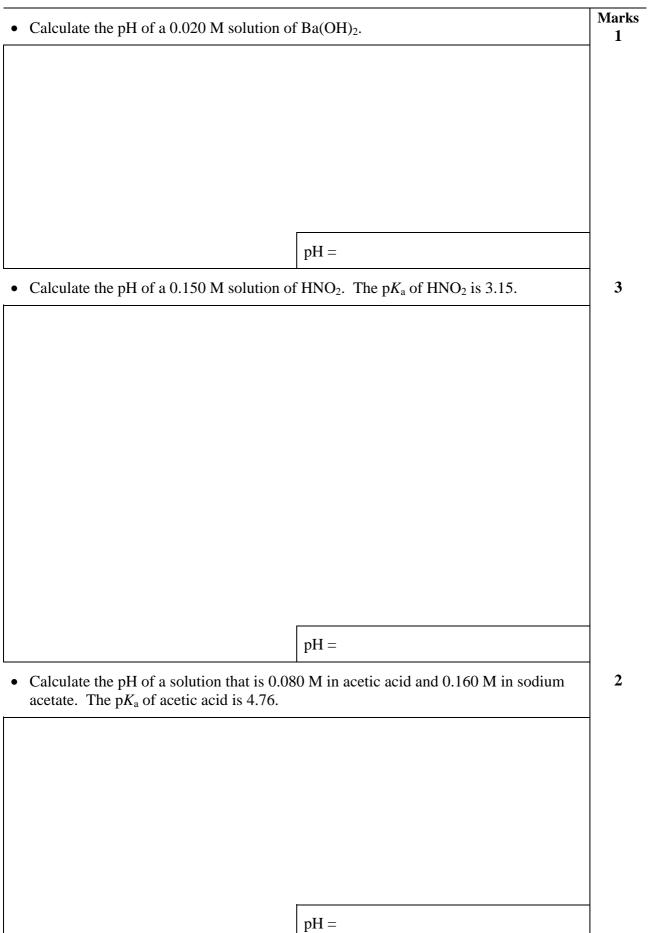
•	The nickel(II) ion exists as the $[Ni(OH_2)_6]^{2+}$ complex ion in aqueous solution. Define the term complex.	Mark 4
		_
	What is the name of this complex ion?	-
		_
	Why is such a solution acidic?	_
		_
	Write a balanced equation for the corresponding reaction.	-
•	You have completed a number of titrations during your laboratory work. What is the difference between the 'end point' and the 'equivalence point' in a titration?	4
	How do you need to consider that distinction when you chose an indicator for a particular titration?	

	• Examine the following pressure/temperature phase diagram for a one component 6									
entropy of the second s										
V	Which phase exists in the	fields labelled A , B and C ?								
A :		B :	C:							
E	Explain your assignment of	of these phases.								
	View de des l'acces in des d'									
\ 	What do the lines in the di	agram represent?								
	What happens when you r pressure?	nove across a line either by ch	anging temperature or							
	For a compound with this vice versa? Explain your	phase diagram, would the soli answer.	id be denser than the liquid or							
<u> </u>										

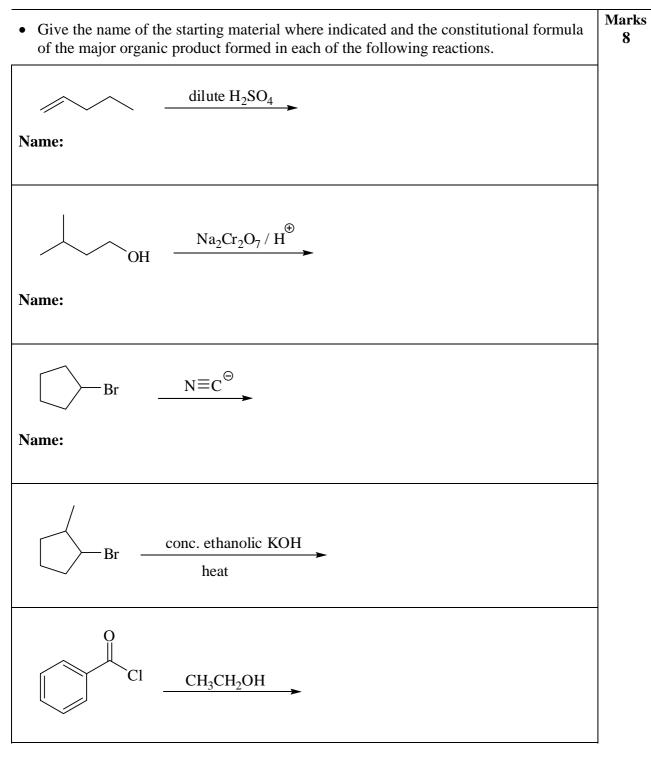
Marks

4

• The data given in the table below were obtained for the reaction between nitric oxide and chlorine at 1400 K.

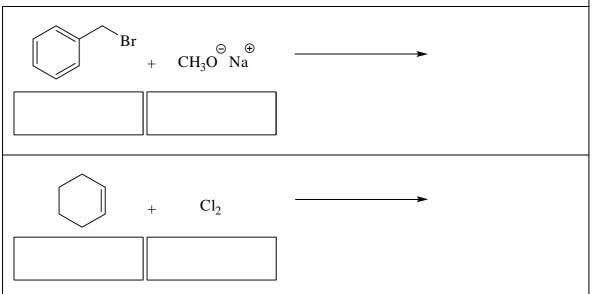

$2100(g) + CI_2(g) + 2100CI(g)$											
Experiment number	$\begin{array}{c} \text{INITIAL [Cl_2]} \\ (\text{mol } \text{L}^{-1}) \end{array}$	$\begin{array}{c} \text{INITIAL [NO]} \\ (\text{mol } \text{L}^{-1}) \end{array}$	INITIAL REACTION RATE $(mol L^{-1} s^{-1})$								
1	0.10	0.10	0.18								
2	0.20	0.10	0.36								
3	0.10	0.20	0.72								

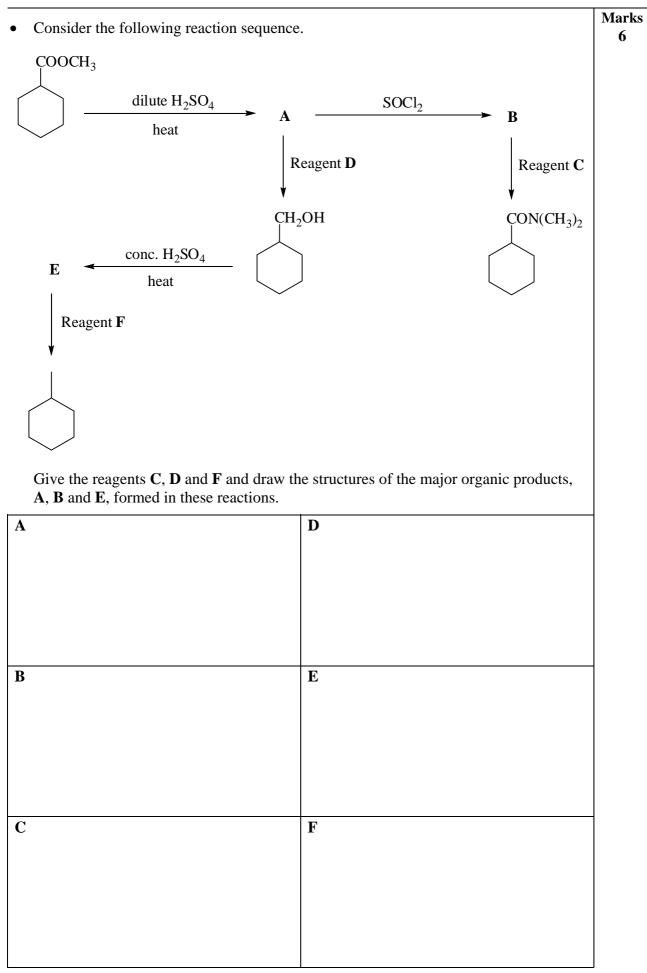
 $2NO(g) + Cl_2(g) \rightarrow 2NOCl(g)$


Deduce the rate law for this reaction and calculate the value of the rate constant.

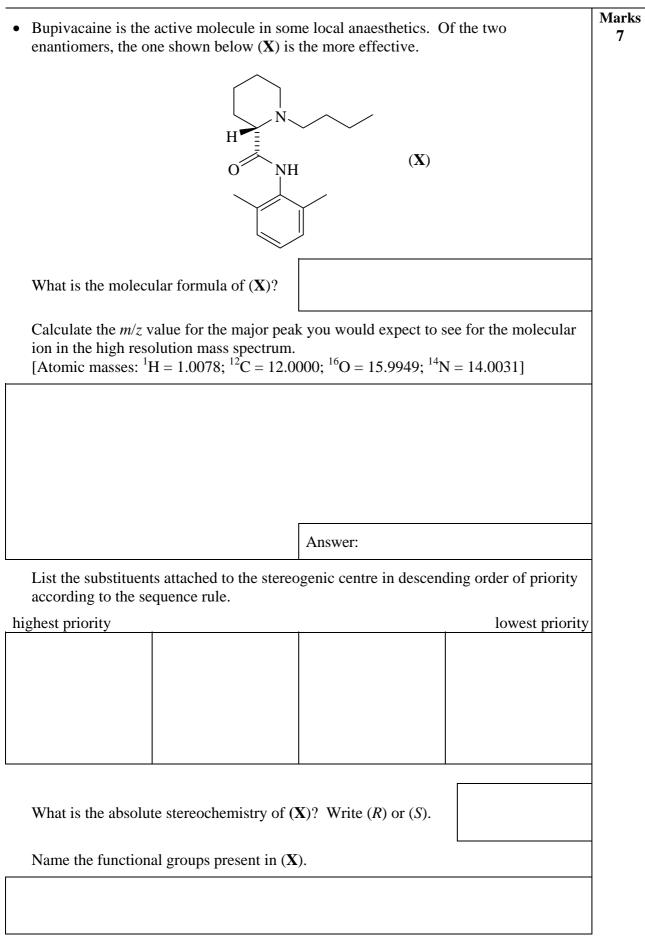
RATE LAW	RATE CONSTANT
Answer:	Answer:

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.


•	Hydrogen bonding is important for the physical properties of water and consequently the very existence of life on earth. What effect does the formation of hydrogen bonding have on the density of solid water (ice) compared to liquid water. Explain.	Marks 4
	Predict the physical form of water under ambient conditions if no hydrogen bonds existed. Explain that prediction.	-
•	BaSO ₄ is used as a contrast agent for X-ray images of intestines. What is the solubility product constant, K_{sp} , for BaSO ₄ , given that a maximum of 1.2×10^{-3} g dissolves in 500.0 mL of water.	4
		-
		_
	Answer:	_
	Ba ²⁺ ions are toxic. Comment on the suitability of BaSO ₄ as a contrast agent.	
	What advantage would there be in administering BaSO ₄ as a slurry which also contains 0.5 M Na ₂ SO ₄ ?	-


Marks

6


• Classify the starting materials for each of the following reactions as nucleophile and electrophile in the boxes provided and draw the structure of the product.

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

Marks • Show clearly the reagents you would use to carry out the following chemical 5 conversion. Two steps are required. Give the structure of the intermediate compound. Br ∠Br How could you distinguish between the starting material and the product by ¹³C NMR spectroscopy?

• Threonine (**Y**) is an amino acid. On the structure of (**Y**) below, identify all stereocentres in threonine with an asterisk (*). $\begin{array}{c} \downarrow & \downarrow \\ & \downarrow$

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

CHEM1002 - FUNDAMENTALS OF CHEMISTRY 1B

DATA SHEET

 $Physical \ constants$ Avogadro constant, $N_{\rm A} = 6.022 \times 10^{23} \ {\rm mol}^{-1}$ Faraday constant, $F = 96485 \ {\rm C} \ {\rm mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \ {\rm J} \ {\rm s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \ {\rm m} \ {\rm s}^{-1}$ Rydberg constant, $E_{\rm R} = 2.18 \times 10^{-18} \ {\rm J}$ Boltzmann constant, $k_{\rm B} = 1.381 \times 10^{-23} \ {\rm J} \ {\rm K}^{-1}$ Permittivity of a vacuum, $\varepsilon_0 = 8.854 \times 10^{-12} \ {\rm C}^2 \ {\rm J}^{-1} \ {\rm m}^{-1}$ Gas constant, $R = 8.314 \ {\rm J} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ $= 0.08206 \ {\rm L} \ {\rm atm} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \ {\rm C}$ Mass of electron, $m_{\rm e} = 9.1094 \times 10^{-31} \ {\rm kg}$ Mass of proton, $m_{\rm p} = 1.6726 \times 10^{-27} \ {\rm kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors	
1 atm = 760 mmHg = 101.3 kPa	$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$
0 °C = 273 K	$1 \text{ Hz} = 1 \text{ s}^{-1}$
$1 L = 10^{-3} m^3$	1 tonne = 10^3 kg
$1 \text{ Å} = 10^{-10} \text{ m}$	$1 \text{ W} = 1 \text{ J s}^{-1}$
$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$	

Deci	mal fract	ions	Deci	Decimal multiples					
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol				
10^{-3}	milli	m	10^{3}	kilo	k				
10^{-6}	micro	μ	10^{6}	mega	Μ				
10^{-9}	nano	n	10^{9}	giga	G				
10^{-12}	pico	р	10^{12}	tera	Т				

CHEM1002 - FUNDAMENTALS OF CHEMISTRY 1B

Standard Reduction Potentials, E°

Reaction	E° / V
$S_2O_8^{2-} + 2e^- \rightarrow 2SO_4^{2-}$	+2.01
$\mathrm{Co}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})$	+1.82
$Ce^{4+}(aq) + e^- \rightarrow Ce^{3+}(aq)$	+1.72
$Au^{3+}(aq) + 3e^{-} \rightarrow Au(s)$	+1.50
$Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Br_2 + 2e^- \rightarrow 2Br^-(aq)$	+1.10
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80
$\mathrm{Fe}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})$	+0.77
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53
$\mathrm{Cu}^{2+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2\mathrm{H}^{+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{g})$	0 (by definition)
$\operatorname{Fe}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Fe}(s)$	-0.04
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.24
$\operatorname{Co}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Co}(s)$	-0.28
$\operatorname{Fe}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Fe}(s)$	-0.44
$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Cr}(s)$	-0.74
$\operatorname{Zn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Zn}(s)$	-0.76
$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83
$Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$	-0.89
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.68
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2.36
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71
$Ca^{2+}(aq) + 2e^{-} \rightarrow Ca(s)$	-2.87
$Li^+(aq) + e^- \rightarrow Li(s)$	-3.04

CHEM1002 - FUNDAMENTALS OF CHEMISTRY 1B

Thermodynamics & Equilibrium	Electrochemistry
$\Delta U = q + w = q - p\Delta V$	$\Delta G^{\circ} = -nFE^{\circ}$
	Moles of $e^- = It/F$
$\Delta_{\rm universe}S = \Delta_{\rm sys}S - \frac{\Delta_{\rm sys}H}{T_{\rm sys}}$	$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$
$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$	$= E^{\circ} - (RT/nF) \times \ln Q$
$\Delta G = \Delta G^{\circ} + RT \ln Q$	$E^{\circ} = (RT/nF) \times 2.303 \log K$
$\Delta G^{\circ} = -RT \ln K$	$= (RT/nF) \times \ln K$
$K_{\rm p} = K_{\rm c} \left(RT \right)^{\Delta n}$	$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$
Colligative properties	Quantum Chemistry
$\pi = cRT$	$E = h u = h c / \lambda$
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$\lambda = h/mv$
$\mathbf{p} = k\mathbf{c}$	$4.5k_{\rm B}T = hc/\lambda$
$\Delta T_{ m f} = K_{ m f} m$	$E = -Z^2 E_{\rm R}(1/n^2)$
$\Delta T_{\rm b} = K_{\rm b} m$	$\Delta x \cdot \Delta (mv) \ge h/4\pi$
	$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$
Acids and Bases	Gas Laws
$pK_{w} = pH + pOH = 14.00$	PV = nRT
$\mathbf{p}K_{\mathrm{w}} = \mathbf{p}K_{\mathrm{a}} + \mathbf{p}K_{\mathrm{b}} = 14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$
$pH = pK_a + \log\{[A^-] / [HA]\}$	
Radioactivity	Kinetics
$t_{1/2} = \ln 2/\lambda$	$t_{1/2} = \ln 2/k$
$A = \lambda N$	$k = A e^{-E_{a}/RT}$
$\ln(N_0/N_t) = \lambda t$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_{\rm o} - kt$
¹⁴ C age = 8033 $\ln(A_0/A_t)$	$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$
Miscellaneous	Mathematics
$A = -\log_{10}\frac{I}{I_0}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
$A = \varepsilon cl$	$\ln x = 2.303 \log x$
$A = \varepsilon c l$ $E = -A \frac{e^2}{4\pi\varepsilon_0 r} N_{\rm A}$	

Useful formulas

1	2	3	4	5	6	7	8	9	10	11	1	2 1	3	14	15	16	17	18
1 нуdrogen Н 1.008																		2 нешим Не 4.003
3 LITHIUM	4 BERYLLIUM											вон	5 RON	6 carbon	7 NITROGEN	8 oxygen	9 FLUORINE	10 NEON
Li	Be											I		С	Ν	0	F	Ne
6.941	9.012											10.	_	12.01	14.01	16.00	19.00	20.18
11 sodium	12 magnesium											1 ALUM		14 SILICON	15 PHOSPHORUS	16 sulfur	17 CHLORINE	18 ARGON
Na	Mg												l	Si	P	S	Cl	Ar
22.99	24.31		-	-				-				26		28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	3			32	33	34	35	36
POTASSIUM K	CALCIUM Ca	scandium Sc	TITANIUM Ti	VANADIUM V	CHROMIUM Cr	MANGANESE Mn	IRON Fe	COBALT CO	NICKEL Ni	COPPER Cu	ZIN			GERMANIUM Ge	ARSENIC AS	selenium Se	BROMINE Br	KRYPTON Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.			72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	4			50	51	52	53	54
RUBIDIUM Rb	strontium Sr	YTTRIUM Y	zirconium Zr	NIOBIUM Nb	MOLYBDENUM Mo	TECHNETIUM TC	RUTHENIUM Ru	RHODIUM Rh	palladium Pd	SILVER	CADM C			Sn	ANTIMONY Sb	TELLURIUM Te	IODINE	xenon Xe
KD 85.47	87.62	∎ 88.91	91.22	92.91	95.94	[98.91]	NU 101.07	102.91	106.4	Ag 107.87	112		.82	511 118.69	121.75	127.60	∎ 126.90	131.30
55	56	57-71	72	73	74	75	76	77	78	79	8			82	83	84	85	86
CAESIUM	BARIUM	0, 11	HAFNIUM	TANTALUM	TUNGSTEN	RHENIUM	OSMIUM	IRIDIUM	PLATINUM	GOLD	MERC	URY THAL	LIUM	LEAD	BISMUTH	POLONIUM	ASTATINE	RADON
Cs 132.91	Ba 137.34		Hf 178.49	Ta 180.95	W 183.85	Re 186.2	Os 190.2	Ir 192.22	Pt 195.09	Au 196.97	H 200			Pb 207.2	Bi 208.98	Po [210.0]	At [210.0]	Rn
87	88	89-103	178.49	105	106	107	190.2	192.22	193.09	196.97	200	.39 204		207.2	208.98	[210.0]	[210.0]	[222.0]
FRANCIUM	RADIUM	89-105	RUTHERFORDIUM	DUBNIUM	SEABORGIUM	BOHRIUM	HASSIUM	MEITNERIUM	1 1 U DARMSTADTIUM	ROENTGENIUM								
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg								
[223.0]	[226.0]		[261]	[262]	[266]	[262]	[265]	[266]	[271]	[272]								
		_	- 1		-	. 1		1 -						_	- [
¥ 13 000 ¥ 13 000	LANTHA		8 RIUM PRA	59 seodymium	60 NEODYMIUM	61 promethium	62 samarium	63 EUROPIUM	64 gadolini	UM TERB		66 dysprosium		57 LMIUM	68 Erbium	69 THULIUM	70 ytterbium	71
LANTHANOI S				Pr	Nd	PROMETRICM	Smakiow	Eu	Gd			DISPROSICM		Но	Er	Tm	Yb	LULINOM
	138.			40.91	144.24	[144.9]	150.4	151.96				162.50			167.26	168.93	173.04	174.97
	89			91	92	93	94	95	96	9'		98		99	100	101	102	103
ACTINOIDS	S ACTINI	UM THO		TACTINIUM	URANIUM	NEPTUNIUM	PLUTONIUM	AMERICIUM	CURIUM	BERKEI		CALIFORNIUM	EINS	TEINIUM	FERMIUM	MENDELEVIUM	NOBELIUM	LAWRENCIUM

Ac

[227.0]

Th

232.04

Pa

[231.0]

U

238.03

Np

[237.0]

Pu

[239.1]

Am

[243.1]

Cm

[247.1]

Bk

[247.1]

Cf

[252.1]

Es

[252.1]

Fm

[257.1]

Md

[256.1]

No

[259.1]

Lr

[260.1]

PERIODIC TABLE OF THE ELEMENTS

November 2008