The University of Sydney

CHEMISTRY 1A - CHEM1101

FIRST SEMESTER EXAMINATION

CONFIDENTIAL

JUNE 2005

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY NAME	SID NUMBER	
OTHER NAMES	TABLE NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 22 pages of examinable material.
- Complete the written section of the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a •.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Pages 15, 20, 23, 25 and 28 are for rough working only.

OFFICIAL USE ONLY

Multiple choice section

/		Marks
Pages	Мах	Gained
2-13	40	

Short answer section

	Marks			
Page	Max	Gained		Marker
14	6			
16	8			
17	6			
18	7			
19	5			
21	4			
22	6			
24	5			
26	8			
27	5			
Total	60			
Check	total			

	1
• In the spaces provided, explain the meanings of the following terms. You may use an example or diagram where appropriate.	Marks 6
(a) Pauli exclusion principle	1
	_
(b) orbital	
(c) p-type semiconductor	-
	_
(d) positron	
THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY	

Marks • Balance the following nuclear reactions by identifying the missing nuclear particle or 3 nuclide. $^{36}_{17}\text{Cl} + ^{0}_{-1}\text{e} \rightarrow$ ${}^{3}_{2}\text{He} + {}^{1}_{1}\text{H} \rightarrow {}^{4}_{2}\text{He} +$ $^{14}_{7}N$ + $^{1}_{0}n$ \rightarrow $^{1}_{1}p$ + 2 • Calculate the atomic mass of sulfur from the isotope information provided. Isotope Mass of isotope (a.m.u.) Relative abundance 32 S 31.97207 95.0% ^{33}S 32.97146 0.76% ^{34}S 33.96786 4.22% ³⁶S 35.96709 0.014% Answer: 3 • Calculate the molar activity of 43 K (in Ci), given its half-life of 22.4 hours.

Answer:

• Complete the t and the predict	able below showing ed shape of each of	g the number of valence of the following species.	electrons, a Lewis structure	Marks 5
Formula	Number of valence electrons	Lewis structure	Name of molecular shape	
e.g. H ₂ O	8	H, O, H	Bent (angular)	
H ₂ CO				1
CH ₃ Cl				
 Which, if either Using the follor C, Te, Zn and Tanswer. 	r, of H ₂ CO and CH wing electronegati Mg would be classi	I ₃ Cl will have a dipole m vity data, decide which o fied as containing ionic b	oment? one or more of the oxides of conds. Briefly explain your	2
	Elemer	nt Electronegativity		
	0	3.5		
	С	2.5		
	Те	2.1		
	Zn	1.4		
	Mg	1.2		

•	• Calculate the energy (in J) and wavelength (in nm) expected for an emission associated with an electronic transition from $n = 4$ to 3 in the B ⁴⁺ ion.		
Eı	nergy =	Wavelength =	-
•	Describe how EITHER the <i>photoelectric</i> e contributed to the development of quantum	effect OR the visible spectrum of hydrogen mechanics.	2

•	Methane, CH ₄ , represents an increasingly important fuel. Write the balanced chemical equation for the combustion of methane.	Marks 4
	Calculate the mass of CO_2 that would be produced by the combustion of 1.00 kg of methane.	
	Answer:	
	Calculate the volume of CO ₂ produced at 0 °C and 1 atm.	
	Answer:	
	In an inefficient combustion reaction some of the methane gas may escape into the atmosphere, thereby decreasing the amount of CO_2 produced. Would such a leakage lead to a greater or lesser enhancement of the Greenhouse Effect? Why?	

Marks • Write the equation whose enthalpy change represents the standard enthalpy of 3 formation of NO(g). Given the following data, calculate the standard enthalpy of formation of NO(g). $2NO_2(g) \qquad \Delta H^\circ = 66.6 \text{ kJ mol}^{-1}$ __ $N_2(g) + 2O_2(g)$ $\Delta H^{\circ} = -114.1 \text{ kJ mol}^{-1}$ $2NO(g) + O_2(g) =$ $2NO_2(g)$ Answer: 3 • Hydrazine, N_2H_4 , burns completely in oxygen to form $N_2(g)$ and $H_2O(g)$. Use the bond enthalpies given below to estimate the enthalpy change for this process. Bond enthalpy (kJ mol⁻¹) Bond Bond enthalpy $(kJ mol^{-1})$ Bond 391 498 N-HO=ON–N 0–О 144 158 N=N 470 O–H 463 945 N–O 214 N≡N Answer:

Marks • The value of the equilibrium constant, K_c , for the following reaction is 0.118 mol L⁻¹. 2 $2CO_2(g) + N_2(g) \implies 2CO(g) + 2NO(g)$ What is the equilibrium concentration of CO(g) if the equilibrium concentration of $[CO_2(g)] = 0.392 \text{ M}, [N_2(g)] = 0.419 \text{ M} \text{ and } [NO(g)] = 0.246 \text{ M}?$ Answer: 3 • When hydrogen cyanide (HCN) is dissolved in water it dissociates into ions according to the following equation. $H^+(aq) + CN^-(aq)$ HCN(aq) ~` The equilibrium constant for this reaction is $K_c = 6.2 \times 10^{-10} \text{ mol } \text{L}^{-1}$. If 1.00 mol of HCN is dissolved to make 1.00 L of solution, calculate the percentage of HCN that will be dissociated. Answer:

• Calculate the mass of aluminium metal that would be produced by the electroreduction of Al^{3+} by a current of 2.5×10^5 A for a period of 1.0 hour.	Marks 4
Answer: Explain why, in the Hall-Heroult process, a molten mixture of Al_2O_3 and Na_3AlF_6 is alactrolyced, rather than either an aqueous solution of Al_3^{3+} or moltan Al_2O_3	_
 In the chlor-alkali process OH⁻(aq) and Cl₂(g) are produced from the electrolysis of a saturated solution of sodium chloride. Write the half-reactions for the production of each of these. 	4
OH ⁻ Cl ₂ Compare the oxidation potential of Cl ⁻ to that of water and explain why Cl ⁻ is oxidised preferentially.	_
	-

	Marks
• Calculate the standard electrochemical potential for the following reaction.	3
$3Zn(s) + 2Cr^{3+}(aq) \implies 3Zn^{2+}(aq) + 2Cr(s)$	
Answer:	-
	_
Use the Nernst equation to calculate the relative cation concentrations at 298 K for which the cell potential, $E = 0$.	
Answer:	
• Fluorine and chlorine are both in Group 17. Briefly explain why HF exhibits hydrogen bonding but HCl does not.	2

CHEM1101 - CHEMISTRY 1A

DATA SHEET

 $Physical \ constants$ Avogadro constant, $N_{\rm A} = 6.022 \times 10^{23} \ {\rm mol}^{-1}$ Faraday constant, $F = 96485 \ {\rm C} \ {\rm mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \ {\rm J} \ {\rm s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \ {\rm m} \ {\rm s}^{-1}$ Rydberg constant, $E_{\rm R} = 2.18 \times 10^{-18} \ {\rm J}$ Boltzmann constant, $k_{\rm B} = 1.381 \times 10^{-23} \ {\rm J} \ {\rm K}^{-1}$ Gas constant, $R = 8.314 \ {\rm J} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ $= 0.08206 \ {\rm L} \ {\rm atm} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \ {\rm C}$ Mass of electron, $m_{\rm p} = 1.6726 \times 10^{-27} \ {\rm kg}$ Mass of neutron, $m_{\rm n} = 1.6749 \times 10^{-27} \ {\rm kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors 1 atm = 760 mmHg = 101.3 kPa 0 °C = 273 K 1 L = 10^{-3} m³ 1 Å = 10^{-10} m 1 eV = 1.602×10^{-19} J 1 Ci = 3.70×10^{10} Bq 1 Hz = 1 s⁻¹

Decimal fractions			
Fraction	Prefix	Symbol	
10^{-3}	milli	m	
10^{-6}	micro	μ	
10^{-9}	nano	n	
10^{-12}	pico	р	

Decimal multiples

Multiple	Prefix	Symbol
10^{3}	kilo	k
10^{6}	mega	Μ
10^{9}	giga	G

Standard Reduction Potential	ls, E°
Reaction	E° / V
$\mathrm{Co}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})$	+1.82
$Ce^{4+}(aq) + e^{-} \rightarrow Ce^{3+}(aq)$	+1.72
$Cl_2(g) + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2(g) + 4H^+(aq) + 4e^- \rightarrow 2H_2O(l)$	+1.23
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$\operatorname{Ag}^{+}(\operatorname{aq}) + \operatorname{e}^{-} \rightarrow \operatorname{Ag}(s)$	+0.80
$\mathrm{Fe}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})$	+0.77
$\operatorname{Cu}^+(\operatorname{aq}) + \operatorname{e}^- \rightarrow \operatorname{Cu}(s)$	+0.53
$\operatorname{Cu}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cu}(s)$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2\mathrm{H}^+(\mathrm{aq}) + 2\mathrm{e}^- \rightarrow \mathrm{H}_2(\mathrm{g})$	0 (by definition)
$\operatorname{Fe}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Fe}(s)$	-0.04
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.24
$\operatorname{Co}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Co}(s)$	-0.28
$\operatorname{Fe}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Fe}(s)$	-0.44
$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Cr}(s)$	-0.74
$\operatorname{Zn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Zn}(s)$	-0.76
$2H_2O(l) + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83
$\operatorname{Cr}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cr}(s)$	-0.89
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.68
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2.36
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71

CHEM1101 - CHEMISTRY 1A

Useful formulas

Quantum Chemistry	Radioactivity							
$E = h v = h c / \lambda$	$t_{l_2} = \ln 2/\lambda$							
$\lambda = h/mv$	$A = \lambda N$							
$4.5k_{\rm B}T = hc/\lambda$	$\ln(N_0/N_t) = \lambda t$							
$E = Z^2 E_{\rm R}(1/n^2)$	¹⁴ C age = 8033 $\ln(A_0/A_t)$							
Acids and Bases	Gas Laws							
$pK_{\rm w} = pH + pOH = 14.00$	PV = nRT							
$pK_{\rm w} = pK_{\rm a} + pK_{\rm b} = 14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$							
$pH = pK_a + \log\{[A^-] / [HA]\}$								
Colligative properties	Kinetics							
$\pi = cRT$	$t_{\nu_2} = \ln 2/k$							
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$k = A e^{-Ea/RT}$							
$\mathbf{p} = k\mathbf{c}$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_{\rm o} - kt$							
$\Delta T_{\rm f} = K_{\rm f} m$	$\ln \frac{k_2}{k_2} - \frac{E_a}{k_1} \left(\frac{1}{k_2} - \frac{1}{k_1} \right)$							
$\Delta T_{\rm b} = K_{\rm b} m$	$\prod_{k_1} R T_1 T_2'$							
Electrochemistry	Thermodynamics & Equilibrium							
$\Delta G^{\circ} = -nFE^{\circ}$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$							
Moles of $e^- = It/F$	$\Delta G = \Delta G^{\circ} + RT \ln Q$							
$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$	$\Delta G^{\circ} = -RT \ln K$							
$= E^{\circ} - (RT/nF) \times \ln Q$	$K_{\rm p} = K_{\rm c} \left(RT ight)^{\Delta n}$							
$E^\circ = (RT/nF) \times 2.303 \log K$								
$= (RT/nF) \times \ln K$								
$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$								
Polymers	Mathematics							
$R_{\rm g} = \sqrt{\frac{n l_0^2}{6}}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$							
	$\ln x = 2.303 \log x$							

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	1 hydrogen H 1.008																	2 нелим Не 4.003
	3 _птним Li 6.941	4 Beryllium Be 9.012											5 вогол В 10.81	6 Carbon C 12.01	7 Nitrogen N 14.01	8 0xygen 0 16.00	9 ^{fluorine} F 19.00	10 _{меом} Ne 20.18
	11 ^{зорим} Na 22.99	12 MAGNESIUM Mg 24 31											13 ALUMINIUM Al 26.98	14 silicon Si 28.09	15 PHOSPHORUS P 30.97	16 ^{SULFUR} S 32.07	17 CHLORINE Cl 35.45	18 ARGON Ar 39.95
	19 ротаssium К 20.10	20 CALCIUM Ca 40.08	21 scandium Sc	22 TITANI TI	2 23 VANADIUM i V	24 снясомиим Сг 52.00	25 MANGANESE Mn 54.04	26 IRON Fe	27 COBALT CO 58 02	28 Nickel Ni	29 COPPER Cu	30 ^{ZINC} Zn	31 GALLIUM Ga 60,72	32 GERMANIUM Gee 72,50	33 ARSENIC AS 74.02	34 selenium Se 78.06	35 BROMINE BR 70.00	36 KRYPTON KR 92.90
	37 RUBIDIUM Rb	38 strontium Sr	39 VTTRIUM Y 88.01	47.0 4(zircon Zi) 41 пим Nobium r Nb	42 MOLYBDENUM MO	43 TECHNETIUM TC	44 RUTHENIUM RU	45 RHODIUM Rh	46 PALLADIUM Pd	47 silver Ag	48 CADMIUM Cd	49 NDIUM In	50 50 50 118 60	51 ANTIMONY Sb	52 TELLURIUM Te	19.90 53 IODINE I 126.00	54 xENON Xe
	55 CAESIUM CS	56 ваким Ва	57-71	91.2 72 HAFNI H170	22 92.91 2 73 1 TANTALUM 6 Ta 40 190.05	93.94 74 TUNGSTEN W	[98.91] 75 кнемим Re	76 озмиим Os	102.91 77 палим Ir	78 PLATINUM Pt	79 GOLD Au	80 MERCURY Hg	114.82 81 тнацим Т]	82 LEAD Pb	121.75 83 візмитн Ві	84 Росолим Ро	85 ASTATINE At	86 RADON Rn
	87 FRANCIUM Fr	137.34 88 RADIUM Ra	89-103	178. 10 RUTHERFO R 1	49 180.95 4 105 bridium dubnium f Db 11 [262]	183.85 106 seaborgium Sg	186.2 107 вонким Вh	190.2 108 назвим Ная [265]	192.22 109 ментлеким Мt	195.09	196.97	200.59	204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
LANTHANIDES		ES	7 сн	58 RIUM	1] [202] 59 praseodymium	60 NEODYMIUM	61 PROMETHIUM	62 SAMARIUM	[200] 63 EUROPIUM	64 gadoliniu	б. тегви	5 (um dysi	56 ROSIUM	67	68 erbium	69 THULIUM	70 ytterbium	71
		La 138. 89	a (91 14	Ce 0.12 90	Pr 140.91 91	Nd 144.24 92	Pm [144.9] 93	Sm 150.4 94	Eu 151.96 95	Gd 157.25 96	5 158. 97	b I 93 16 7 9	Dy 2.50 1 98	Ho 64.93 99	Er 167.26 100	Tm 168.93 101	Yb 173.04 102	Lu 174.97 103
		S ACTINI) (им тн	90 DRIUM	91 protactinium	92 uranium	93 NEPTUNIUM	94 plutonium	95 AMERICIUM	96 curium	97 BERKEL	7 CALI	98 FORNIUM EI	99 NSTEINIUM	100 fermium	101 mendelevium	102 NOBELIUM	1 LAWF

Cm

[247.1]

Am

[243.1]

Bk

[247.1]

Cf

[252.1]

Es

[252.1]

Fm

[257.1]

Md

[256.1]

No

[259.1]

Lr

[260.1]

PERIODIC TABLE OF THE ELEMENTS

CHEM1101 – CHEMISTRY 1A

22/06(b)

ACTINIDES

Ac

[227.0]

Th

232.04

Pa

[231.0]

U

238.03

Np

[237.0]

Pu

[239.1]