The University of Sydney

CHEMISTRY 1A - CHEM1101

SECOND SEMESTER EXAMINATION

CONFIDENTIAL

NOVEMBER 2004

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY	SID	
NAME	NUMBER	
OTHER	TABLE	
NAMES	NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 22 pages of examinable material.
- Complete the written section of the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a •.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Pages 18, 21, 24, 27 and 28 are for rough working only.

OFFICIAL USE ONLY

Multiple choice section

		Marks
Pages	Ma	Gained
2-11	36	

Short answer section

		Marks		
Page	Max	Gained		Marker
12	7			
13	7			
14	5			
15	8			
16	4			
17	5			
19	5			
20	6			
22	5			
23	4			
25	3			
26	6			
Total	64			

• Balance the follo nuclide.	owing nuclear reactions by	y identifying the missing r	nuclear particle or 4
Where might the	${}^{1}_{1}H + {}^{1}_{1}H \rightarrow$ ${}^{2}_{1}H +$ ${}^{3}_{2}He + {}^{3}_{2}He \rightarrow$ ese reactions occur natural	$^{2}_{1}H + \square$ $\rightarrow ^{3}_{2}He$ $\square + ^{1}_{1}H + ^{1}_{1}I$ Illy?	ł
The half life of ¹ Calculate the spectrum of the spectr	³¹ I is 8.06 days. Calculat ecific activity of ¹³¹ I in Ci	e the activity, in Bq, of 12 mol ⁻¹ .	.0 g of pure ¹³¹ I. 3
Answer:	Bq	Answer:	Ci mol ⁻¹

•	Describe how one of the following pieces of experimental evidence contributed to the development of quantum mechanics.	Marks 3
	photoelectric effect OR visible spectrum of hydrogen	
•	K-shell x-ray emission $(2p \rightarrow 1s)$ from an unknown element is of the same wavelength as the shortest x-rays observed as <i>Bremsstrahlung</i> when electrons are accelerated by 52.9 keV into a copper target. What is the name of the unknown element?	4
	ANSWEK:	

•	C ₂ is a reaction intermediate observed in f	flame	s, comets and circumstellar shells.	Marks 5
	How many valence electrons are there in	C ₂ ?		
	Complete the calculated MO diagram for the ground state of C_2 by inserting the appropriate number of valence electrons into the appropriate orbitals.		20 	
		:gy (eV)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
		ener	-10 $-\frac{10}{\sigma}\pi$	
			-30- σ	
	What is the bond order of C ₂ ?			_
	What is the longest wavelength of light th Show working.	at the	e ground state C_2^+ ion will absorb?	
		Ans	wer:	

Marks

4

Complete the table below showing the total number of σ-bonding and non-bonding electron pairs, the Lewis structure and the predicted shape of each of the following species.
 Formula Total number of σ-bonding and non-bonding electron
 Lewis structure Name of molecular shape

	pairs on central atom		
e.g. NH ₃	4	H—Ň—H H	trigonal pyramidal
ClF3			
PO ₄ ^{3–}			

• Explain why the first ionisation energy of an atom of oxygen is slightly lower than that of an atom of nitrogen, despite being further across the period.

2

2

• Write down the ground state electron configurations of the following elements. Phosphorus is given as an example.

Marks • The structure of tetrahydrocannabinol may be drawn thus: 4 a QН #2b Ĺ. Name the functional groups in the boxes **a** and **b**. a b What are the approximate bond angles at the atoms labelled #1 and #2? C#1 C#2 The infrared spectrum of tetrahydrocannabinol shows strong absorption at 3600 cm^{-1} . Explain this in terms of the functional groups present in the molecule. THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

Marks • Two students determined the specific heat capacity of steel as follows. Student 1 5 poured 200 mL of recently boiled water into a styrofoam cup calorimeter and measured the temperature of the water to be 90.0 °C. A steel teaspoon (25 g) at room temperature (20.0 °C) was placed into the cup, where it was completely submerged. After equilibrium was presumedly reached, the temperature was measured to be 88.7 °C. Student 2 took the same cup and filled it with 200 mL of water at room temperature (20.0 °C) and placed the same teaspoon from the freezer (- 40.0 °C) into the cup. After equilibrium was presumedly reached, the temperature recorded was 19.2 °C. Determine the specific heat capacity of steel using the experimental data of each student. The specific heat capacity of water is 4.184 J g^{-1} K⁻¹. Assume the density of water is 1.00 g mL^{-1} at all temperatures. Student 2: Student 1: Which student's value is more accurate? Give reasons for your answer.

•	The mechanism of copper toxicity to aquatic organisms is unknown. Most theories attribute the toxicity to the Cu^{2+} species because Cu^{+} is unstable in aqueous solution. Given the half-reactions and half-cell potentials on the data page, show that it is electrochemically favourable for $Cu^{+}(aq)$ to react with itself to form $Cu^{2+}(aq)$ and $Cu(s)$.	Marks 3
•	The Co^{3+} ion is unstable in aqueous solution, but for a different reason to Cu^+ above. Using the table of reduction potentials on the data page, propose the reason why this	2
	might de so.	
	THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY	

Marks • When 1.0 mol of acetic acid and 1.0 mol of ethanol are mixed they react according to 3 the following equation. $C_2H_5OH(1) + CH_3COOH(1) \iff CH_3COOC_2H_5(1) + H_2O(1)$ At equilibrium the mixture contains 0.67 mol of the ester (CH₃COOC₂H₅). What is the equilibrium constant for the reaction? ANSWER: 3 • Bromine-containing compounds are even more ozone depleting than the analogous chlorine-containing compounds. In the stratosphere, an equilibrium exists between bromine and the NO_x species. One of these equilibrium reactions is: 2NOBr(g) \Rightarrow 2NO(g) + Br₂(g) To study this reaction, an atmospheric chemist places a known amount of NOBr in a sealed container at 25 °C to a pressure of 0.250 atm and observes that 34% of it decomposes into NO and Br₂. What is K_p for this reaction? ANSWER:

compounds called fatty and water, releasing en palmitic acid, CH ₃ (CH oxidation of palmitic a	olecules react with y acids. These fatt hergy to power the I_2) ₁₄ COOH. Write here to produce CO	water (hydrolyse) to y acids are then conv muscles. A typical h a balanced equation $_2(g)$ and $H_2O(l)$.	form a group of erted to carbon dioxide numan fatty acid is for the complete	
The direct combustion the body together with What is the standard en	of palmitic acid in the production of nthalpy of formatic	a calorimeter yields 9980 kJ of heat per r on of palmitic acid?	the same products as in nole of palmitic acid.	
Data:	Compound	$\Delta H_{\rm f}^{\circ}$ (kJ mol ⁻¹)		
	H ₂ O(l)	-285.8		
	CO ₂ (g)	-393.5		
		Answer:		
One gram of carbohyd equivalent energy valu	rate yields about 1' e per gram of palm	Answer: 7 kJ of energy in the nitic acid.	body. Calculate the	-
One gram of carbohyd equivalent energy valu	rate yields about 1' e per gram of palm	Answer: 7 kJ of energy in the hitic acid.	body. Calculate the	-
One gram of carbohyd equivalent energy valu	rate yields about 1' e per gram of palm	Answer: 7 kJ of energy in the nitic acid.	body. Calculate the	-
One gram of carbohyd equivalent energy valu	rate yields about 1' e per gram of palm	Answer: 7 kJ of energy in the hitic acid.	body. Calculate the	-
One gram of carbohyd equivalent energy valu	rate yields about 1' e per gram of palm	Answer: 7 kJ of energy in the hitic acid.	body. Calculate the	-
One gram of carbohyd equivalent energy valu	rate yields about 1' e per gram of palm	Answer: 7 kJ of energy in the hitic acid.	body. Calculate the	
One gram of carbohyd equivalent energy valu	rate yields about 1' e per gram of palm	Answer: 7 kJ of energy in the hitic acid.	body. Calculate the	
One gram of carbohyd equivalent energy valu	rate yields about 1' e per gram of palm	Answer: 7 kJ of energy in the hitic acid.	body. Calculate the	

• Th nit atr eq	e bacterium rogen contain nospheric N ₂ uilibrium:	A <i>zotobac</i> ning com . The so	<i>cter chrooce</i> pounds, ob lubility of l	tains N_2 in	<i>n</i> , growing aerobically in a medium free of all of its nitrogen by the "fixation" of water is governed by the following	Marks
	N	$V_2(aq)$	\sim N ₂ (g)		$K = 1.6 \times 10^3 \text{ atm L mol}^{-1}$	
W 30	hat is the con °C? (Air is	centratic 78% N ₂ .	on of dissolv)	ved N	J_2 available to the bacterium at 1.0 atm and	
					Answer:	
A cu 1.(culture of the lture and has) atm and 30	ese bacter a nitroge °C woul	ria (1.0 L) g en content o d supply thi	grows of 7.0 is niti	s to a density of 0.84 mg dry weight per mL of % of the dry weight. What volume of air at rogen requirement?	
						1

Some phy below.	sical properties of	three hydrogen-bondec	l compounds are li	sted in the table	/Iarl 3
	Compound (A)	Energy of AA H-bond (kJ mol ^{-1})	Boiling point (K)		
	HF	27	293		
	H ₂ O	22	373		
	NH ₃	17	240		
Explain th	ne origin of the trer	nds in the AA H-bor	nd energy.		
Explain w other two	by the boiling poin compounds.	nt of H_2O appears anon	nalously high in co	omparison to the	
Explain w other two	why the boiling poin compounds.	nt of H_2O appears anon	nalously high in co	omparison to the	
Explain w other two	hy the boiling poin compounds.	nt of H ₂ O appears anon	nalously high in co	omparison to the	
Explain w other two	hy the boiling poin compounds.	nt of H ₂ O appears anon	nalously high in co	omparison to the	
Explain w other two	hy the boiling poin compounds.	nt of H ₂ O appears anon	nalously high in co	omparison to the	
Explain w other two	hy the boiling poin compounds.	nt of H ₂ O appears anon	nalously high in co	omparison to the	

 A concentration cell is constructed of two hydrogen electrodes; one immersed in solution with [H⁺] = 1.0 M and the other in hydrochloric acid of unknown concentration. The observed cell potential was 0.25 V. What is the pH of the unknown hydrochloric acid? 	a Marks 3
Answer:	
 Consider the organic solvents ethanol (CH₃CH₂OH) and ether (CH₃CH₂OCH₂C. Which liquid will have the higher vapour pressure? Give a brief reason for your answer. 	H ₃). 3
Consider the liquids mercury and water. Which liquid will have the higher surfatension? Give a brief reason for your answer.	ice

CHEM1101 - CHEMISTRY 1A

DATA SHEET

Physical constants

Avogadro constant, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$ Faraday constant, $F = 96485 \text{ C mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \text{ J s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \text{ m s}^{-1}$ Rydberg constant, $E_R = 2.18 \times 10^{-18} \text{ J}$ Boltzmann constant, $k_B = 1.381 \times 10^{-23} \text{ J K}^{-1}$ Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ $= 0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors

1 atm = 760 mmHg = 101.3 kPa 0 °C = 273 K 1 L = 10^{-3} m³ 1 Å = 10^{-10} m 1 eV = 1.602×10^{-19} J 1 Ci = 3.70×10^{10} Bq 1 Hz = 1 s^{-1}

Deci	mal fract	ions	Deci	Decimal multiples									
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol								
10^{-3}	milli	m	10^{3}	kilo	k								
10 ⁻⁶	micro	μ	10^{6}	mega	М								
10^{-9}	nano	n	10 ⁹	giga	G								
10^{-12}	pico	р											

CHEM1101 - CHEMISTRY 1A

Standard Reduction Potentials, E °

Reaction	E° / V
$\mathrm{Co}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})$	+1.82
$Ce^{4+}(aq) + e^{-} \rightarrow Ce^{3+}(aq)$	+1.72
$Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80
$\operatorname{Fe}^{3+}(\operatorname{aq}) + e^{-} \rightarrow \operatorname{Fe}^{2+}(\operatorname{aq})$	+0.77
$\mathrm{Cu}^+(\mathrm{aq}) + \mathrm{e}^- \rightarrow \mathrm{Cu}(\mathrm{s})$	+0.53
$\operatorname{Cu}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cu}(s)$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2\mathrm{H}^{+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{g})$	0 (by definition)
$Fe^{3+}(aq) + 3e^- \rightarrow Fe(s)$	-0.04
$Pb^{2+}(aq) + 2e^- \rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.24
$Fe^{2+}(aq) + 2e^- \rightarrow Fe(s)$	-0.44
$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Cr}(s)$	-0.74
$Zn^{2+}(aq) + 2e^- \rightarrow Zn(s)$	-0.76
$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83
$\operatorname{Cr}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cr}(s)$	-0.89
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.68
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2.36
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71

CHEM1101 - CHEMISTRY 1A

Useful Formulas

Quantum Chemistry

 $E = hv = hc/\lambda$ $\lambda = h/mu$ $4.5k_{\rm B}T = hc/\lambda$ $E = Z^2 E_{\rm R}(1/n^2)$

$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$ $\Delta G = \Delta G^{\circ} + RT \ln Q$ $\Delta G^{\circ} = -RT \ln K$ $K_{\rm p} = K_{\rm c} (RT)^{\Delta n}$

Thermodynamics & Equilibrium

Kinetics

 $k = Ae^{-Ea/RT} \qquad A = \lambda N$ $t_{1/2} = \ln 2/k \qquad \ln(N_0/N_t) = \lambda t$ $\ln[A] = \ln[A]_0 - kt \qquad ^{14}C \text{ age} = 8033 \ln(A_0/A_t)$

Gas Laws

PV = nRT $(P + n^{2}a/V^{2})(V - nb) = nRT$

Colligative Properties

 $\pi = cRT$ p = kc $P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$ $\Delta T_{\text{f}} = K_{\text{f}}m$ $\Delta T_{\text{b}} = K_{\text{b}}m$

Polymers

$$R_{\rm g} = \sqrt{\frac{n l_0^2}{6}}$$

Radioactivity

Acids and Bases

 $pK_{w} = pH + pOH = 14.00$ $pK_{w} = pK_{a} + pK_{b} = 14.00$ $pH = pK_{a} + \log\{[A^{-}] / [HA]\}$

Electrochemistry

$$\Delta G^{\circ} = -nFE^{\circ}$$
Moles of $e^- = It/F$

$$E = E^{\circ} - (RT/nF) \ln Q$$

$$= E^{\circ} - (RT/nF) \times 2.303 \log Q$$

$$E^{\circ} = (RT/nF) \ln K$$

$$= (RT/nF) \times 2.303 \log K$$

$$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at } 25 \text{ °C)}$$

Mathematics

If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ ln $x = 2.303 \log x$

November 2004

CHEM1101 - CHEMISTRY 1A

 $(q)_{0,0}$

																		_								-	_
18	2 Не 4.003	10	NEON	Ne	20.18	18 Argon	Ar	39.95	36	Kr	83.80	54	Xe	131.30	86	RADON	Kn	0.444				71	II.	174.97	103	LAWRENCIUN	260.1
17		6	FLUORINE		19.00	17 CHLORINE	CI	35.45	35 1	Br	79.90	53	IODINE	126.90	85	ASTATINE	At [210.0]	[0.012]				70	γh	173.04	102	N	17U [259.1]
16		8	OXYGEN		16.00	16 sulfur	S	32.07	34	Se	78.96	52	TELLURIUM	127.60	84	MUINOLO	P0	[0.012]				69	Tm	168.93	101		1 VIU [256.1]
15		L	NITROGEN		14.01	15 phosphorus	Ρ	30.97	33 ABEENIC	As	74.92	51	AND ANT AND	121.75	83	BISMUTH	Bi 208.08	700.00				68	F,r	167.26	100	FERMIUM	[257.1]
14		9	CARBON	ن ا ا	12.01	14 ^{surcon}	Si	28.09	32	Ge	72.59	50	N N	118.69	82	LEAD	170	1 101				67	Ho	164.93	66		E.S 252.1]
13		5	BORON	n :	10.81	13 ALUMINIUM	N	26.98	31	Ga	69.72	49	In	114.82	81	THALLIUM	LT.	10.102				99	Dv	52.50	98		52 .1]
12									30	Zn	65.39	48		112.40	80	MERCURY	Hg 200.50	10.007						93 16			1
11									29	Cu	63.55	47	A O	107.87	79	GOLD	Au 196.97	17.071				65	LL I	158.9	67	BERKELL	10 [247.
10									28 ****	Ż	58.69	46		106.4	78	PLATINUM	Pt	10.071				64	Ъд	157.25	96	CURIUM	[247.1]
6									27	Co	58.93	45	Rhobium Rh	102.91	LL		Ir	109	MEITNERIUM	Mt [266]	1	63	Eu	151.96	95		A
8									26	Fe	55.85	44		101.07	76	WIIMSO		108	MUISSEH	Hs [265]		62	Sm	150.4	94		L u [239.1]
٢									25	Mn	54.94	43		[98.91]	75	RHENIUM	Re	107	BOHRIUM	Bh [262]	- 1	61	Pm	[144.9]	93	NINUM	1 1 J
9									24	Cr	52.00	42		95.94	74	TUNGSTEN	183.85	106	SEABORGIUM	\mathbf{Sg} ^[266]		60	PN	144.24	92	URANIUM TT	2 38.03
S									23	Λ	50.94	41		92.91	£L	TANTALUM	Ta 180.05	105	DUBNIUM	Db [262]	1	59	Pr	40.91	91		Fa 231.0]
4									22	Ti	47.88	40	ZIRCONIUM 7.r	91.22	72	HAFNIUM	HT 178 A0	104	THERFORDIUM	Rf [261]	1			1 1		M PRO	1 40
e									21	Sc	44.96	39		38.91	7-71			9-103				58	Ŭ	140.	96		232.0
7		4	WILLIUM	Be	.012	12 aneseum	Mg	4.31	20	Ca	0.08	38	Sr.	7.62 8	56 5	ARIUM	Ba	88 80		Ra 26.0]	1	57	E, T	138.91	89		FAU [227.0]
1	1 нуркосем Н 1.008	3	LITHIUM BEN		6.941 9.	11 sodium mac	Na	22.99 2.	19	K	39.10 4	37	RUBDIUM Rh	85.47 8	55	CAESIUM B.	CS 132 01 13		FRANCIUM	Fr [223.0] [2:	1	<u> </u>	ANTHANIDES		•	ACTINIDES	

PERIODIC TABLE OF THE ELEMENTS