The University of Sydney

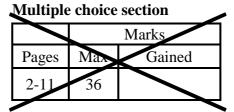
CHEMISTRY 1A - CHEM1101

SECOND SEMESTER EXAMINATION

CONFIDENTIAL

NOVEMBER 2005

TIME ALLOWED: THREE HOURS


GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY	SID	
NAME	NUMBER	
OTHER	TABLE	
NAMES	NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 21 pages of examinable material.
- Complete the written section of the examination paper in **INK**.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a ●.
- Electronic calculators, including programmable calculators, may be used.
 Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Pages 21 and 24 are for rough working only.

OFFICIAL USE ONLY

Short answer section

Short answer section				
	Marks			
Page	Max	Gaine	d	Marker
12	11			
13	4			
14	10			
15	4			
16	7			
17	3			
18	3			
19	7			
20	4			
22	4			
23	7			
Total	64			

• Balance the following nuclear reactions by identifying the missing nuclear particle or nuclide.

Marks 3

$$^{14}_{7}\text{N} + ^{2}_{1}\text{H} \rightarrow ^{15}_{8}\text{O} +$$

$$^{20}_{10}\text{Ne} + ^{1}_{0}\text{n} \rightarrow ^{20}_{9}\text{F} +$$

$$e^+ + e^- \rightarrow$$

• In the spaces provided, explain the meanings of the following terms. You may use an example or diagram where appropriate.

8

(a) Pauli exclusion principle

(b) electron affinity

(c) metallic radius

(d) alpha particle

•	Use the relationship $E_k = \frac{1}{2}mv^2$ to calculate the velocity of an electron accelerated
	by 150 V, and hence calculate its wavelength.

Marks

Velocity:

Wavelength:

• Calculate the atomic mass of chromium from the isotope information provided.

Isotope	Mass of isotope (a.m.u.)	Relative abundance
⁵⁰ Cr	49.946046	4.35%
⁵² Cr	51.940509	83.79%
⁵³ Cr	52.940651	9.5%
⁵⁴ Cr	53.938882	2.36%

Answer:

2

• Sketch the lobe representations of the following wavefunctions.		MI
(a) a 2s atomic orbital	(b) a π* molecular orbital	
Explain the meaning of the following appropriate.	ng terms. Use an example or diagram where	
(a) band gap		
(b) ionic bonding		
() II .		
(c) allotrope		

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

• Complete the table below showing the number of valence electrons, the Lewis structure and the predicted shape of each of the following species.

Marks 5

Formula	Number of valence electrons	Lewis structure	Geometry of species
e.g. NH ₃	8	H— <u>\(\bar{N}\)</u> —H H	trigonal pyramidal
ClF ₅			
$\mathrm{NO_2}^-$			

Which of NH₃, ClF₅ and NO₂⁻ have a non-zero dipole moment?

• What is the approximate value of the most intense wavelength emitted by the star Proxima Centauri, which has a temperature of 2700 K?

2

Answer:

• What are the approximate bond angles at the carbon atoms labelled #1 and #2 in the following compound?

Marks 3

The infrared spectrum of this compound shows a strong absorption at 3500 cm⁻¹. Explain this observation in terms of the functional groups present in the molecule.

for each transition.	ons to of ΔH 3

•	In an experiment at 20 °C and 101 kPa, 40.0 mL of $CO_2(g)$ was mixed with 5.0 mL of water. After equilibration, the final volume was 39.0 mL. Calculate the mole fraction solubility of CO_2 in water. Assume the density of water is 1.0 g mL $^{-1}$.	Marks 4
	Answer:	
•	Automobile airbags are inflated by the decomposition of sodium azide according to the following equation. $6NaN_3(s) + Fe_2O_3(s) \rightarrow 3Na_2O(s) + 2Fe(s) + 9N_2(g)$	3
	What mass of NaN ₃ is required to produce 75 L of nitrogen gas at 25 °C and 1.31 atm?	
	Answer:	

• Consider the following reaction.	Mark:
$N_2O_4(g)$ \rightleftharpoons $2NO_2(g)$	
An experiment was conducted in which 0.1000 mol of $N_2O_4(g)$ was introduced into a 1.000 L flask. After equilibrium had been established at a particular temperature, the concentration of $N_2O_4(g)$ was found to be 0.0491 M. Calculate the equilibrium constant, K_c , for the reaction as written at that temperature.	
Answer:	

Answer:

CHEM1101 - CHEMISTRY 1A DATA SHEET

Physical constants

Avogadro constant, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

Faraday constant, $F = 96485 \text{ C mol}^{-1}$

Planck constant, $h = 6.626 \times 10^{-34} \,\mathrm{J s}$

Speed of light in vacuum, $c = 2.998 \times 10^8 \text{ m s}^{-1}$

Rydberg constant, $E_R = 2.18 \times 10^{-18} \text{ J}$

Boltzmann constant, $k_B = 1.381 \times 10^{-23} \text{ J K}^{-1}$

Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$

 $= 0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}$

Charge of electron, $e = 1.602 \times 10^{-19} \text{ C}$

Mass of electron, $m_e = 9.1094 \times 10^{-31} \text{ kg}$

Mass of proton, $m_p = 1.6726 \times 10^{-27} \text{ kg}$

Mass of neutron, $m_{\rm n} = 1.6749 \times 10^{-27} \, {\rm kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 $^{\circ}$ C = 24.5 L

Volume of 1 mole of ideal gas at 1 atm and $0 \, ^{\circ}\text{C} = 22.4 \, \text{L}$

Density of water at 298 K = 0.997 g cm⁻³

Conversion factors

$$1 \text{ atm} = 760 \text{ mmHg} = 101.3 \text{ kPa}$$

$$0 \, ^{\circ}\text{C} = 273 \, \text{K}$$

$$1 L = 10^{-3} m^3$$

$$1 \text{ Å} = 10^{-10} \text{ m}$$

$$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$$

$$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$$

$$1 \text{ Hz} = 1 \text{ s}^{-1}$$

Decimal fractions			Deci	Decimal multiples		
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol	
10^{-3}	milli	m	10^3	kilo	k	
10^{-6}	micro	μ	10^{6}	mega	M	
10^{-9}	nano	n	10 ⁹	giga	G	
10^{-12}	pico	p				

CHEM1101 - CHEMISTRY 1A

Standard Reduction Potentials, $E^{\,o}$

E° / V
+1.82
+1.72
+1.50
+1.36
+1.23
+0.96
+0.92
+0.80
+0.77
+0.53
+0.34
+0.15
0 (by definition)
-0.04
-0.13
-0.14
-0.24
-0.44
-0.74
-0.76
-0.83
-0.89
-1.68
-2.36
-2.71
-2.87
-3.04

CHEM1101 - CHEMISTRY 1A

Useful formulas

Quantum Chemistry	Radioactivity
$E = hv = hc/\lambda$	$t_{1/2} = \ln 2/\lambda$
$\lambda = h/mv$	$A = \lambda N$
$4.5k_{\rm B}T = hc/\lambda$	$\ln(N_0/N_t) = \lambda t$
$E = Z^2 E_{\rm R}(1/n^2)$	14 C age = 8033 ln(A_0/A_t)
$\Delta x \cdot \Delta(mv) \ge h/4\pi$	
Acids and Bases	Gas Laws
$pK_{\rm w} = pH + pOH = 14.00$	PV = nRT
$pK_{\rm w}=pK_{\rm a}+pK_{\rm b}=14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$
$pH = pK_a + \log\{[A^-] / [HA]\}$	
Colligative properties	Kinetics
$\pi = cRT$	$t_{1/2} = \ln 2/k$
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$k = Ae^{-E_{a}/RT}$
p = kc	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_{o} - kt$
$\Delta T_{ m f} = K_{ m f} m$	$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$
$\Delta T_{\rm b} = K_{\rm b} m$	$k_1 R T_1 T_2$
Electrochemistry	Thermodynamics & Equilibrium
$\Delta G^{\circ} = -nFE^{\circ}$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$
$Moles\ of\ e^- = It/F$	$\Delta G = \Delta G^{\circ} + RT \ln Q$
$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$	$\Delta G^{\circ} = -RT \ln K$
$= E^{\circ} - (RT/nF) \times \ln Q$	$K_{\rm p} = K_{\rm c} (RT)^{\Delta n}$
$E^{\circ} = (RT/nF) \times 2.303 \log K$	
$= (RT/nF) \times \ln K$	
$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$	
Polymers	Mathematics
$R_{\rm g} = \sqrt{\frac{n l_0^2}{6}}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
	$ \ln x = 2.303 \log x $

PERIODIC TABLE OF THE ELEMENTS

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 hydrogen																	2 HELIUM
H																	He
1.008		1													ı	1	4.003
3 LITHIUM	4 BERYLLIUM											5 BORON	6 carbon	7 nitrogen	8 oxygen	9 FLUORINE	10 NEON
Li	Be											BORON	CARBON	NIROGEN	OXYGEN	F	Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
SODIUM	MAGNESIUM											ALUMINIUM	SILICON	PHOSPHORUS	SULFUR	CHLORINE	ARGON
Na	Mg											Al	Si	P	S	Cl	Ar
22.99	24.31							ı			ı	26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
POTASSIUM K	Calcium	SCANDIUM Sc	Ti Ti	VANADIUM V	Cr	MANGANESE	Fe	COBALT	Nickel Ni	Cu	Zinc Zn	Gallium	GERMANIUM Ge	ARSENIC AS	SELENIUM Se	Bromine Br	KRYPTON Kr
39.10	40.08	44.96	47.88	∨ 50.94	52.00	Mn 54.94	55.85	Co 58.93	58.69	63.55	65.39	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
O / RUBIDIUM	STRONTIUM	39 YTTRIUM	4U zirconium	41 NIOBIUM	4∠ MOLYBDENUM	43 TECHNETIUM	44 RUTHENIUM	HODIUM	40 PALLADIUM	4 / SILVER	CADMIUM	H9 INDIUM	JU TIN	J I ANTIMONY	JZ TELLURIUM	IODINE	XENON
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98.91]	101.07	102.91	106.4	107.87	112.40	114.82	118.69	121.75	127.60	126.90	131.30
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
CAESIUM	BARIUM		HAFNIUM TTC	TANTALUM	TUNGSTEN	RHENIUM	OSMIUM	IRIDIUM	PLATINUM	GOLD	MERCURY	THALLIUM	LEAD	BISMUTH	POLONIUM	ASTATINE	RADON
Cs	Ba		Hf	Ta	W	Re	Os	Ir	Pt 105.00	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.91	137.34	00.102	178.49	180.95	183.85	186.2	190.2	192.22	195.09	196.97	200.59	204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
87 Francium	88 radium	89-103	104 RUTHERFORDIUM	105 Dubnium	106 SEABORGIUM	107 BOHRIUM	108 hassium	109 MEITNERIUM									
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt									
[223.0]	[226.0]		[261]	[262]	[266]	[262]	[265]	[266]									
									1								

LANTHANIDES

ACTINIDES

	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
S	LANTHANUM	CERIUM	PRASEODYMIUM	NEODYMIUM	PROMETHIUM	SAMARIUM	EUROPIUM	GADOLINIUM	TERBIUM	DYSPROSIUM	HOLMIUM	ERBIUM	THULIUM	YTTERBIUM	LUTETIUM
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	138.91	140.12	140.91	144.24	[144.9]	150.4	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
	89 actinium	90 THORIUM	91 PROTACTINIUM	92 URANIUM	93 NEPTUNIUM	94 PLUTONIUM	95 AMERICIUM	96 CURIUM	97 BERKELLIUM	98 CALIFORNIUM	99 EINSTEINIUM	100	101	102 NOBELIUM	103
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	[227.0]	232.04	[231.0]	238.03	[237.0]	[239.1]	[243.1]	[247.1]	[247.1]	[252.1]	[252.1]	[257.1]	[256.1]	[259.1]	[260.1]