Topics in the November 2009 Exam Paper for CHEM1101

Click on the links for resources on each topic.

2009-N-2:

• Nuclear and Radiation Chemistry

2009-N-3:

• Band Theory - MO in Solids

2009-N-4:

- Periodic Table and the Periodic Trends
- Filling Energy Levels in Atoms Larger than Hydrogen

2009-N-5:

• Wave Theory of Electrons and Resulting Atomic Energy Levels

2009-N-6:

• Material Properties (Polymers, Liquid Crystals, Metals, Ceramics)

• Lewis Structures

2009-N-7:

• Bonding - MO theory (larger molecules)

2009-N-8:

• Chemical Equilibrium

2009-N-9:

- Thermochemistry
- First and Second Law of Thermodynamics

2009-N-10:

- Thermochemistry
- First and Second Law of Thermodynamics

2009-N-11:

• Gas Laws

2009-N-12:

• First and Second Law of Thermodynamics

2009-N-13:

• Electrochemistry

2009-N-14:

- Nitrogen in the Atmosphere
- Electrochemistry

22/07(a)

The University of Sydney

CHEMISTRY 1A - CHEM1101

SECOND SEMESTER EXAMINATION

CONFIDENTIAL

NOVEMBER 2009

TIME ALLOWED: THREE HOURS

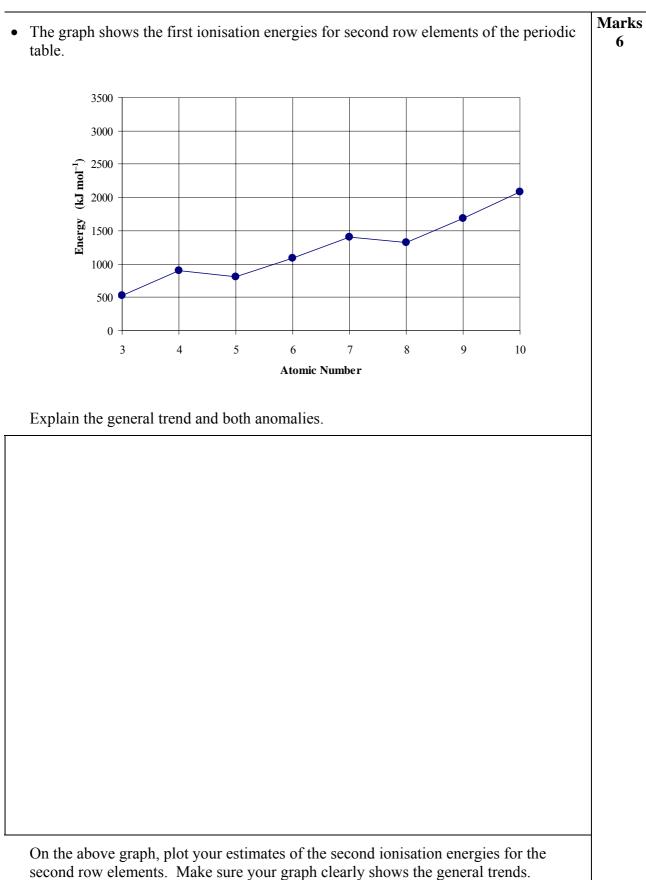
GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY NAME	SID NUMBER	
OTHER NAMES	TABLE NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 22 pages of examinable material.
- Complete the written section of the examination paper in INK.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a •.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Pages 18, 21, 25, 27 and 28 are for rough working only.

OFFICIAL USE ONLY


Multiple choice section			
	/	Marks	
Pages	Max	Gained	
2-10	34		

Short answer section

	Marks			
Page	Max	Gained		Marker
11	5			
12	6			
13	6			
14	4			
15	4			
16	6			
17	2			
19	7			
20	6			
22	4			
23	3			
24	6			
26	7			
Total	66			

•	Write two possible mechanisms for the radioactive decay of ⁸³ Rb to ⁸³ Kr.	Marks 5
		. –
r	The half-life of ⁸³ Rb is 86.2 days. Calculate the activity (in Bq) of an isotopically pure 1.000 g sample of ⁸³ Rb. (The molar mass of ⁸³ Rb is 82.915110 g mol ^{-1} .)	
	Answer:	
<u> </u>	How many days will it take for this sample to diminish to 1 % of its initial activity?	
	Answer:	

• Pure silicon is an insulator. Explain, with band structure diagrams, how doping pure silicon with a small amount of aluminium can turn it into a p-type semiconductor.	Marks 4
 Sketch the wave function of a 2p orbital as a lobe representation. Clearly mark all nodes (spherical and/or planar) and nuclear positions. 	2

Marks • Moseley discovered experimentally in 1913 that the atomic number, Z, of an element 4 is inversely proportional to the square root of the wavelength, λ , of fluorescent X-rays emitted when an electron drops from the n = 2 to the n = 1 shell. *i.e.* $\frac{1}{\sqrt{\lambda}} = kZ$ If iron emits X-rays of 1.937 Å when a 2s electron drops back to the 1s shell, determine the identity of the elements contained in an alloy found to emit the same type of X-rays at 1.435 Å and 1.541 Å? Answer:

Marks • Rhodamine 6G, whose structure is shown below, is a dye used in various applications 4 such as lasers and environmental monitoring. Ο Η Ö Cl^{Θ} \oplus N Name three functional groups present in the rhodamine 6G molecule. After absorbing green light, rhodamine 6G will emit yellow-orange light. Draw an indicative emission spectrum for this dye on the axes below. Emission intensity 450 550 650 Wavelength (nm)

CHEM1101

	plecule which is observed in comets, flames	Marks 6
provided shows the energies of the orbital for the valence electrons in the C_2 molecu Indicate on this diagram the ground state electronic configuration of C_2 using the	ls _ σ*	
In its ground state, is C ₂ paramagnetic or	diamagnetic?	
	Answer	
the next lowest σ orbital brings about the	ing an electron from the lowest σ^* orbital to doubly excited state responsible for green	
	Answer:	
	and interstellar clouds. The molecular orbital energy level diagra provided shows the energies of the orbital for the valence electrons in the C ₂ molecu Indicate on this diagram the ground state electronic configuration of C ₂ using the arrow notation for electron spins. In its ground state, is C ₂ paramagnetic or The lowest energy excited state of C ₂ pos spins. What is the bond order of C ₂ in thi Starting in this excited state, further excit the next lowest σ orbital brings about the	The molecular orbital energy level diagram provided shows the energies of the orbitals for the valence electrons in the C_2 molecule. Indicate on this diagram the ground state electronic configuration of C_2 using the arrow notation for electron spins. In its ground state, is C_2 paramagnetic or diamagnetic? The lowest energy excited state of C_2 possesses two electrons with parallel, unpaired spins. What is the bond order of C_2 in this excited state? Starting in this excited state, further exciting an electron from the lowest σ^* orbital to the next lowest σ orbital brings about the doubly excited state?

•	The value of the equilibrium constant, K_c , for the following reaction is 0.118 mol L ⁻¹ .	Marks 2
	$2CO_2(g) + N_2(g) \implies 2CO(g) + 2NO(g)$	_
	What is the equilibrium concentration of CO(g) if the equilibrium concentration of $[CO_2(g)] = 0.492 \text{ M}, [N_2(g)] = 0.319 \text{ M} \text{ and } [NO(g)] = 0.350 \text{ M}?$	
	Answer:	-
L	THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY	J

Marks • A 50.0 mL solution contained 5.00 g of NaOH in water at 25.00 °C. When it was 4 added to a 250.0 mL solution of 0.100 M HCl at 25.00 °C in a "coffee cup" calorimeter, the temperature of the solution rose to 26.12 °C. Is the process an endothermic or exothermic reaction? Assuming the specific heat of the solution is 4.18 J K^{-1} g⁻¹, that the calorimeter absorbs a negligible amount of heat, and that the density of the solution is 1.00 g mL⁻ ¹, calculate $\Delta_{\rm r} H$ (in kJ mol⁻¹) for the following reaction. $H^+(aq) + OH^-(aq) \rightarrow H_2O(1)$ Answer: 1 • Indicate the relative entropy of each system in the following pairs of systems. Use: ">", "<", or "=". $H_2O(g)$ $H_2O(s)$ $3O_2(g)$ $2O_{3}(g)$ • Consider butane (C_4H_{10}) and pentane (C_5H_{12}) . Which gas has the higher entropy 2 at 40 °C? Give reasons for your answer.

6

Marks • The thermite reaction is written below. Show that the heat released in this reaction is sufficient for the iron to be produced as molten metal.

$$2Al(s) + Fe_2O_3(s) \rightarrow Al_2O_3(s) + 2Fe(l)$$

Assume that the values in the table are independent of temperature.

Substance	Enthalpy of formation, $\Delta_{\rm f} H^{\rm o}$ kJ mol ⁻¹	Molar heat capacity, C_p J K ⁻¹ mol ⁻¹	Melting point °C	Enthalpy of fusion kJ mol ⁻¹
Al	0	24	660	11
Al ₂ O ₃	-1676	79	2054	109
Fe	0	25	1535	14
Fe ₂ O ₃	-824	104	1565	138

• A helium balloon is filled on the ground, where the atmospheric pressure is 768 mmHg. The volume of the balloon is 8.00 m ³ . When the balloon reaches an altitude of 4200 m, its volume is found to be 16.8 m ³ . Assuming that the temperature remains constant, what is the air pressure at 4200 m in mmHg?		
Answer:		
• The volume of a gas is 40.0 mL at -15 °C and 1.30 atm. At what temperature (°C) will the gas have a pressure of 1.00 atm and a volume of 65.0 mL?	2	
Answer:	_	

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

Marks

3

• Pentane, CH₃CH₂CH₂CH₂CH₃, burns completely in oxygen to form CO₂(g) and H₂O(g). Use the bond enthalpies given below to estimate the enthalpy change for this process.

Bond	Bond enthalpy (kJ mol ⁻¹)	Bond	Bond enthalpy $(kJ mol^{-1})$
С–Н	414	О–Н	463
C–C	346	0–0	144
C=O	804	0=0	498

Answer:

			==;;;;(
		ell is –0.742 V at 298 K.	Marks 4
$Ag(s) AgNO_3 ($	0.010 M) NaI (0.030	M) AgI(s) Ag(s)	
Calculate the stand the following react		etermine the equilibrium constant, $K_{\rm sp}$, for	
	$AgI(s) \rightarrow Ag$	$g^+(aq) + I^-(aq)$	
$E^{\circ}_{cell} =$		$K_{\rm sp} =$	
	e in the following pairs of forces present for the	that has the stronger intermolecular forces. species selected.	2
molecule pair	types of intermole	ecular forces	
H ₂ or N ₂			
CH ₃ Cl or CH ₄			
SO ₂ or CO ₂			
H ₂ O or H ₂ S			
			1

•		he tailpipe? M), form in a car engin ake sure you include			Marks 2
1						
1						
•	Calculate the s		ial at 298 K of the fo		ical cell.	5
		Cu(s) C	$u^{2+}(aq) \parallel Fe^{3+}(aq), Fe^{3+}(aq)$	1	l	
	Data:	24	$\Delta_{\rm f} H^{\circ} / (\rm kJ \ mol^{-1})$	$S^{\circ} / (J K^{-1} mol^{-1})$		
		$Fe^{3+}(aq)$	-49	-316		
		$Fe^{2+}(aq)$	-89	-138		
		Cu ²⁺ (aq)	65	-100		
		Cu(s)	0	33		-
			r			
			Answei			

CHEM1101 - CHEMISTRY 1A

DATA SHEET

Physical constants Avogadro constant, $N_{\rm A} = 6.022 \times 10^{23} \text{ mol}^{-1}$ Faraday constant, $F = 96485 \text{ C mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \text{ J s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \text{ m s}^{-1}$ Rydberg constant, $E_{\rm R} = 2.18 \times 10^{-18} \text{ J}$ Boltzmann constant, $k_{\rm B} = 1.381 \times 10^{-23} \text{ J K}^{-1}$ Permittivity of a vacuum, $\varepsilon_0 = 8.854 \times 10^{-12} \text{ C}^2 \text{ J}^{-1} \text{ m}^{-1}$ Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ $= 0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \text{ C}$ Mass of electron, $m_{\rm e} = 9.1094 \times 10^{-31} \text{ kg}$ Mass of proton, $m_{\rm p} = 1.6726 \times 10^{-27} \text{ kg}$

Properties of matter Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors	
1 atm = 760 mmHg = 101.3 kPa	$1 \text{ Pa} = 1 \text{ N m}^{-2} = 1 \text{ kg m}^{-1} \text{ s}^{-2}$
0 °C = 273 K	$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$
$1 L = 10^{-3} m^3$	$1 \text{ Hz} = 1 \text{ s}^{-1}$
$1 \text{ Å} = 10^{-10} \text{ m}$	1 tonne = 10^3 kg
$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$	$1 \text{ W} = 1 \text{ J s}^{-1}$

Deci	mal fract	ions	Deci	Decimal multiples						
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol					
10^{-3}	milli	m	10^{3}	kilo	k					
10^{-6}	micro	μ	10^{6}	mega	Μ					
10^{-9}	nano	n	10 ⁹	giga	G					
10^{-12}	pico	р	10 ¹²	tera	Т					

CHEM1101 - CHEMISTRY 1A

Standard Reduction Potentials, E°	
Reaction	E° / V
$S_2O_8^{2-} + 2e^- \rightarrow 2SO_4^{2-}$	+2.01
$\mathrm{Co}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})$	+1.82
$Ce^{4+}(aq) + e^- \rightarrow Ce^{3+}(aq)$	+1.72
$MnO_4^-(aq) + 8H^+(aq) + 5e^- \rightarrow Mn^{2+}(aq) + 4H_2O$	+1.51
$\operatorname{Au}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Au}(s)$	+1.50
$Cl_2(g) + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2(g) + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Br_2 + 2e^- \rightarrow 2Br^-(aq)$	+1.10
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+}(aq) + 2H_2O$	+0.96
$NO_3^{-}(aq) + 4H^+(aq) + 3e^- \rightarrow NO(g) + 2H_2O$	+0.96
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80
$Fe^{3+}(aq) + e^- \rightarrow Fe^{2+}(aq)$	+0.77
$I_2(aq) + 2e^- \rightarrow 2I^-(aq)$	+0.62
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53
$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2\mathrm{H}^{+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{g})$	0 (by definition)
$Fe^{3+}(aq) + 3e^- \rightarrow Fe(s)$	-0.04
$Pb^{2+}(aq) + 2e^- \rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14
$Ni^{2+}(aq) + 2e^- \rightarrow Ni(s)$	-0.24
$\operatorname{Co}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Co}(s)$	-0.28
$Fe^{2+}(aq) + 2e^- \rightarrow Fe(s)$	-0.44
$Cr^{3+}(aq) + 3e^- \rightarrow Cr(s)$	-0.74
$Zn^{2+}(aq) + 2e^- \rightarrow Zn(s)$	-0.76
$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83
$Cr^{2+}(aq) + 2e^- \rightarrow Cr(s)$	-0.89
$Al^{3+}(aq) + 3e^- \rightarrow Al(s)$	-1.68
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2.36
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71
$Ca^{2+}(aq) + 2e^{-} \rightarrow Ca(s)$	-2.87
$Li^+(aq) + e^- \rightarrow Li(s)$	-3.04

CHEM1101 - CHEMISTRY 1A

Useful formulas

Quantum Chemistry	Electrochemistry
$E = h\nu = hc/\lambda$	$\Delta G^{\circ} = -nFE^{\circ}$
$\lambda = h/mv$	Moles of $e^- = It/F$
$E = -Z^2 E_{\rm R}(1/n^2)$	$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$
$\Delta x \cdot \Delta (mv) \ge h/4\pi$	$= E^{\circ} - (RT/nF) \times \ln Q$
$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	$E^{\circ} = (RT/nF) \times 2.303 \log K$
$T \lambda = 2.898 \times 10^6 \text{ K nm}$	$= (RT/nF) \times \ln K$
	$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$
Acids and Bases	Gas Laws
$pK_{\rm w} = pH + pOH = 14.00$	PV = nRT
$\mathbf{p}K_{\mathrm{w}} = \mathbf{p}K_{\mathrm{a}} + \mathbf{p}K_{\mathrm{b}} = 14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$
$pH = pK_a + \log\{[A^-] / [HA]\}$	$E_{\rm k} = \frac{1}{2}mv^2$
Radioactivity	Kinetics
$t_{1/2} = \ln 2/\lambda$	$t_{\frac{1}{2}} = \ln 2/k$
$A = \lambda N$	$k = A e^{-Ea/RT}$
$\ln(N_0/N_t) = \lambda t$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_{\rm o} - kt$
14 C age = 8033 ln(A_0/A_t) years	$\ln \frac{k_{2}}{k_{1}} = \frac{E_{a}}{R} \left(\frac{1}{T_{1}} - \frac{1}{T_{2}} \right)$
Colligative Properties and Solutions	Thermodynamics and Equilibrium
$\Pi = cRT$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$\Delta G = \Delta G^{\circ} + RT \ln Q$
c = kp	$\Delta G^{\circ} = -RT \ln K$
$\Delta T_{\rm f} = K_{\rm f} m$	$\Delta_{\rm univ}S^\circ = R\ln K$
$\Delta T_{\rm b} = K_{\rm b} m$	$K_{\rm p} = K_{\rm c} \left(RT \right)^{\Delta n}$
Miscellaneous	Mathematics
$A = -\log \frac{I}{I_0}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
$A = \varepsilon c l$	$\ln x = 2.303 \log x$
$E = -A \frac{e^2}{4\pi\varepsilon_0 r} N_{\rm A}$	Area of circle = πr^2
$4\pi\varepsilon_0 r^{**}$	Surface area of sphere = $4\pi r^2$

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 нудкоден Н 1.008																	2 нешим Не 4.003
3 LITHIUM Li	4 BERYLLIUM Be											5 boron B	6 carbon C	7 nitrogen N	8 oxygen O	9 ^{FLUORINE} F	10 _{меом} Ne
6.941 11 sodium Na	9.012 12 MAGNESIUM Mg											10.81 13 ALUMINIUM Al	12.01 14 silicon Si	14.01 15 рноярновия Р	16.00 16 SULFUR S	19.00 17 CHLORINE Cl	20.18 18 ARGON Ar
22.99 19 ротахним К 39.10	24.31 20 састим Са 40.08	21 scandium Sc 44.96	22 тіталіцм Ті 47.88	23 vanadium V 50.94	24 снгомиим Сг 52.00	25 manganese Mn 54.94	26 IRON Fe 55.85	27 cobalt Co 58.93	28 Nickel Ni 58.69	29 соррек Cu 63.55	30 ^{ZINC} Zn 65.39	26.98 31 GALLIUM Ga 69.72	28.09 32 germanium Ge 72.59	30.97 33 ARSENIC AS 74.92	32.07 34 selenium Se 78.96	<u>35.45</u> <u>35</u> вкоміне Br 79.90	39.95 36 кгуртол Кг 83.80
37 ^{RUBIDIUM} Rb	38 strontium Sr	39 yttrium Y	47.88 40 zirconium Zr 91.22	41 _{мовіим} Nb	42 molybdenum Mo	43 тесниетим Тс	44 ^{RUTHENIUM} Ru	45 _{кнодіим} Rh	46 Palladium Pd	47 SILVER Ag	48 cadmium Cd	49 ілогим In	50 ттм Sn	51 ANTIMONY Sb	52 TELLURIUM Te	53 1001NE I	54 xenon Xe
85.47 55 caesium Cs	87.62 56 вакіим Ва	88.91 57-71	72 hafnium Hf	92.91 73 tantalum Ta	95.94 74 ^{TUNGSTEN} W	[98.91] 75 RHENIUM Re	101.07 76 озмиим О S	102.91 77 ікійим Ir	106.4 78 PLATINUM Pt	107.87 79 _{GOLD} Au	<u>112.40</u> 80 мексику Н g	114.82 81 тнацим ТІ	118.69 82 LEAD Pb	121.75 83 візмитн Ві	127.60 84 родолим Ро	126.90 85 ASTATINE At	131.30 86 RADON Rn
132.91 87 FRANCIUM F r	137.34 88 radium Ra	89-103	178.49 104 RUTHERFORDIUM Rf	180.95 105 dubnium Db	183.85 106 seaborgium Sg	186.2 107 воняши Вh	190.2 108 назвим Н S	<u>192.22</u> 109 меітлегіим Мt	195.09 110 darmstadtium Ds	<u>196.97</u> 111 ^{коентденим} Rg	200.59	204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
[223.0] LANTHANOI S	[226.0] ID 57	NUM CER		[262] 59 seodymum Pr	[266] 60 Neodymium Nd	[262] 61 PROMETHIUM Pm	[265] 62 SAMARIUM Sm	[266] 63 EUROPTUM Eu	[271] 64 GADOLINIT Gd		UM DYSI		67 юіміим Но	68 Erbium Er	69 ^{тнилим} Тт	70 ^{уттервіцм} Ур	71 LUTETIUM Lu
3	138.			40.91	1 4 4.24	[144.9]	511 150.4	151.96	157.2			•	64.93	167.26	168.93	173.04	174.97

89

ACTINIUM

Ac [227.0]

ACTINOIDS

90

THORIUM

Th

232.04

91

PROTACTINIUM

Pa

[231.0]

92

URANIUM

U

238.03

93

NEPTUNIUM

Np

[237.0]

94

PLUTONIUM

Pu

[239.1]

95

AMERICIUM

Am

[243.1]

96

CURIUM

Cm

[247.1]

97

BERKELLIUM

Bk

[247.1]

98

CALIFORNIUM

Cf

[252.1]

99

EINSTEINIUM

Es

[252.1]

100

FERMIUM

Fm

[257.1]

101

MENDELEVIUM

Md

[256.1]

102

NOBELIUM

No

[259.1]

103

LAWRENCIUM

Lr

[260.1]

PERIODIC TABLE OF THE ELEMENTS