Topics in the November 2010 Exam Paper for CHEM1101

Click on the links for resources on each topic.

2010-N-2:

• Periodic Table and the Periodic Trends

2010-N-3:

- Filling Energy Levels in Atoms Larger than Hydrogen
- Atomic Electronic Spectroscopy

2010-N-4:

• Nuclear and Radiation Chemistry

2010-N-5:

- Lewis Structures
- VSEPR

2010-N-6:

• Lewis Structures

2010-N-7:

• Thermochemistry

2010-N-8:

- Chemical Equilibrium
- Gas Laws

2010-N-9:

Chemical Equilibrium

2010-N-10:

Chemical Equilibrium

2010-N-11:

• First and Second Law of Thermodynamics

2010-N-12:

• Electrochemistry

2010-N-13:

- Electrochemistry
- Batteries and Corrosion

2207(a)

THE UNIVERSITY OF SYDNEY

CHEMISTRY 1A - CHEM1101

CONFIDENTIAL

SECOND SEMESTER EXAMINATION

NOVEMBER 2010

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY		SID	
NAME	Ν	NUMBER	
OTHER		TABLE	
NAMES	Ν	NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 21 pages of examinable material.
- Complete the written section of the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a •.
- Only non-programmable, Universityapproved calculators may be used.
- Students are warned that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Pages 12 and 24 are for rough working only.

OFFICIAL USE ONLY

Short answer section

	Marks			
Page	Max	Gained		Marker
11	6			
13	10			
14	8			
15	6			
16	5			
17	5			
18	6			
19	3			
20	5			
21	4			
22	6			
23	6			
Total	70			
Check total				

• The electron affinity is negative if energy is released upon addition of an electron. If it is positive, the resultant anion is unstable. Explain why beryllium has a positive electron affinity, while that of fluorine is highly negative.	Marks 6
Why is the ionisation potential of oxygen slightly smaller than nitrogen, despite being further across the period?	
How is this related to the slightly positive electron affinity of nitrogen?	
]

Marks • Both strontium and strontianite are named after Strontian, a village in Scotland near 10 which the mineral was first discovered. Strontium displays crimson (red) colouration in a flame. Give the ground state configuration for Sr. Indicating only valence electrons, the electronic transition $5s5p \rightarrow 5s^2$ in strontium brings about 460 nm photons. Can this transition be responsible for the crimson colour of Sr flames? Explain. Another transition, $5s4d \rightarrow 5s^2$, occurs at 6*s* 496 nm. Show the transitions responsible (not to scale) 5pfor 460 nm and 496 nm photons on the Energy energy level diagram to the right. 4d5sCalculate, in eV, the energy gap between the 4d and 5p orbitals of strontium. Answer: Explain why the 4d orbitals of strontium are of a higher energy than the 5s orbitals. Electron spins cannot flip easily during a transition. Explain why the excited state of Sr, 5s5p with parallel spins, is long-lived.

•	Sixteen unstable isotopes of strontium are known to exist. Of greatest importance are ⁹⁰ Sr with a half-life of 28.78 years and ⁸⁹ Sr with a half-life of 50.5 days. ⁹⁰ Sr is found in nuclear fallout as it is a by product of nuclear fassion	Marks 8
	Calculate the activity (in Bq) of 20.0 g of 90 Sr.	
	Answer:	
	Calculate the age (to the nearest year) of a sample of ⁹⁰ Sr that has an activity one- eighth of a freshly prepared sample.	
	Answer:	
	Determine the specific activity of 90 Sr in Ci g $^{-1}$.	
	Answer:	
	⁹⁰ Sr presents a long-term health problem as it substitutes for calcium in bones. Comment on why Sr can substitute for Ca so readily.	

• Complete the table below showing the number of **valence** electrons, the Lewis structures and the predicted shapes of the following species. Ammonia, NH₃, is given as an example.

Formula	Number of electron pairs on central atom (discounting multiple bonds)	Lewis Structure	Name of molecular shape
NH ₃	4	H = N = H H	trigonal pyramidal
ClF ₃			
PO4 ³⁻			

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

Marks

6

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

 Water solutions of NaOH (100.0 mL, 2.0 24.6 °C, were mixed together in a coffee solution rose to 38.0 °C during the reaction to describe the reaction in the calorimeter 	M) and HCl (100.0 mL, 2.0 M), both at cup calorimeter. The temperature of the on process. Write a balanced ionic equation :	Marks 5
Is the process an endothermic or exotherm	nic reaction?	
Assuming a perfect calorimeter, determin neutralisation reaction. Assume the densicapacity of water is $4.18 \text{ J g}^{-1} \text{ K}^{-1}$.	the standard enthalpy change for the ity of water is 1.00 g mL^{-1} . The heat	
	Allowel.	

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

Marks

3

• The reaction below is endothermic.

 $N_2O_3(g) \implies NO(g) + NO_2(g)$

Indicate whether the equilibrium will shift right, shift left, or remain unchanged when disturbed in the following ways.

adding more NO(g)

increasing the pressure at constant temperature

removing NO₂(g)

increasing the volume at constant temperature

adding some Ar(g)

increasing the temperature at constant pressure

• Automobile airbags are inflated by the decomposition of sodium azide according to the following equation.

$$6NaN_3(s) + Fe_2O_3(s) \rightarrow 3Na_2O(s) + 2Fe(s) + 9N_2(g)$$

What mass of NaN₃ is required to produce 63 L of nitrogen gas at 25 °C and 1.76 atm?

Answer:

3

Marks • At 1000 K, a reaction mixture containing SO₂(g), O₂(g) and SO₃(g) was allowed to 3 come to equilibrium in a reaction vessel. The reaction is: $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$ At equilibrium, the system was found to contain the following concentrations: [SO₂] = 0.00377 M, [O₂] = 0.00430 M and [SO₃] = 0.00185 M. Calculate K_c for this reaction. $K_{\rm c} =$ If a mixture containing $[SO_2] = 0.0471$ M, $[O_2] = 0.0280$ M, and $[SO_3] = 0.00125$ M is placed in the vessel, is the reaction at equilibrium? If not, which way will it shift in order to achieve equilibrium, right or left?

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

Marks • What does it mean to say that a reaction has reached equilibrium? 1 • Consider the following equilibrium. 4 $Br_2(g) + Cl_2(g) \iff 2BrCl(g)$ $K_{\rm c} = 7.0$ at 400 K If 0.44 mol of Br_2 and 0.44 mol of Cl_2 are introduced into a 2.0 L container at 400 K, what are the equilibrium concentrations of $Br_2(g)$, $Cl_2(g)$ and BrCl(g)? $[Cl_2(g)] =$ [BrCl(g)] = $[Br_2(g)] =$

CHEM1	101
-------	-----

• The heat of combustion of acetylene, C ₂ H ₂ (g), is -1301 kJ mol ⁻¹ . What is the heat of formation of acetylene gas?				
Data: $\Delta_{\rm f} H^{\circ}$ of CO ₂ (g) = -393.5 kJ mol ⁻¹	$\Delta_{\rm f} H^{\circ}$ of H ₂ O(l) = -285.8 kJ mol ⁻¹			
		-		
	$\Delta_{ m f} H^{\circ} =$			

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

•

Page Total:

2

• For each electrochemical cell described, write the half-reaction that occurs at each electrode and the overall balanced redox reaction.

A voltaic cell constructed using a scandium rod in a solution of scandium(III) ions (Sc^{3+}/Sc) as one half-cell and a nickel rod in a solution of nickel(II) ions (Ni^{2+}/Ni) as the other half-cell.

Cathode	
Anode	
Overall cell reaction	
A voltaic cell	in which oxidation of Cr to Cr^{3+} by O_2 in the presence of acid occurs.
Cathode	
Anode	
Overall cell reaction	
An alkaline ba the anode, Zn	attery consists of a powdered Zn/gel anode and a C/MnO ₂ cathode. At is oxidised to Zn^{2+} which reacts with the OH ⁻ ion present in the paste to

the anode, Zn is oxidised to Zn^{2^+} which reacts with the OH⁻ ion present in the paste to form $Zn(OH)_2(s)$. Suppose that an alkaline battery was manufactured using Fe metal instead of Zn metal, and that the Fe was oxidised to Fe²⁺ at the anode. What effect would this have on the cell potential or emf of the battery? Explain your answer briefly.

Marks

4

CHEM1101 - CHEMISTRY 1A

DATA SHEET

 $Physical \ constants$ Avogadro constant, $N_{\rm A} = 6.022 \times 10^{23} \ {\rm mol}^{-1}$ Faraday constant, $F = 96485 \ {\rm C} \ {\rm mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \ {\rm J} \ {\rm s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \ {\rm m} \ {\rm s}^{-1}$ Rydberg constant, $E_{\rm R} = 2.18 \times 10^{-18} \ {\rm J}$ Boltzmann constant, $k_{\rm B} = 1.381 \times 10^{-23} \ {\rm J} \ {\rm K}^{-1}$ Permittivity of a vacuum, $\varepsilon_0 = 8.854 \times 10^{-12} \ {\rm C}^2 \ {\rm J}^{-1} \ {\rm m}^{-1}$ Gas constant, $R = 8.314 \ {\rm J} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \ {\rm C}$ Mass of electron, $m_{\rm e} = 9.1094 \times 10^{-31} \ {\rm kg}$ Mass of proton, $m_{\rm p} = 1.6726 \times 10^{-27} \ {\rm kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors	
1 atm = 760 mmHg = 101.3 kPa	$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$
$0 ^{\circ}\text{C} = 273 \text{K}$	$1 \text{ Hz} = 1 \text{ s}^{-1}$
$1 L = 10^{-3} m^3$	1 tonne = 10^3 kg
$1 \text{ Å} = 10^{-10} \text{ m}$	$1 \text{ W} = 1 \text{ J s}^{-1}$
$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$	

Decimal fractions		Deci	Decimal multiples		
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol
10^{-3}	milli	m	10^{3}	kilo	k
10^{-6}	micro	μ	10^{6}	mega	Μ
10^{-9}	nano	n	10 ⁹	giga	G
10^{-12}	pico	р			

CHEM1101 - CHEMISTRY 1A

Standard Reduction Potentials, E°	
Reaction	E° / V
$\mathrm{Co}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})$	+1.82
$\operatorname{Ce}^{4+}(\operatorname{aq}) + \operatorname{e}^{-} \rightarrow \operatorname{Ce}^{3+}(\operatorname{aq})$	+1.72
$MnO_4^-(aq) + 8H^+(aq) + 5e^- \rightarrow Mn^{2+}(aq) + 4H_2O$	+1.51
$\operatorname{Au}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Au}(s)$	+1.50
$Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^- \rightarrow 2Cr^{3+}(g) + 7H_2O$	+1.36
$Cl_2(g) + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2(g) + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Pt^{2+}(aq) + 2e^- \rightarrow Pt(s)$	+1.18
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96
$NO_3^{-}(aq) + 4H^+(aq) + 3e^- \rightarrow NO(g) + 2H_2O$	+0.96
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80
$\operatorname{Fe}^{3+}(\operatorname{aq}) + e^{-} \rightarrow \operatorname{Fe}^{2+}(\operatorname{aq})$	+0.77
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53
$\operatorname{Cu}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cu}(s)$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2\mathrm{H}^{+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{g})$	0 (by definition)
$\operatorname{Fe}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Fe}(s)$	-0.04
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.24
$\mathrm{Cd}^{2+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{Cd}(\mathrm{s})$	-0.40
$Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$	-0.44
$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Cr}(s)$	-0.74
$\operatorname{Zn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Zn}(s)$	-0.76
$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83
$\operatorname{Cr}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cr}(s)$	-0.89
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.68
$\mathrm{Sc}^{3+}(\mathrm{aq}) + 3\mathrm{e}^{-} \rightarrow \mathrm{Sc}(\mathrm{s})$	-2.09
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2.36
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71
$\operatorname{Ca}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Ca}(s)$	-2.87
$Li^+(aq) + e^- \rightarrow Li(s)$	-3.04

CHEM1101 - CHEMISTRY 1A

Useful formulas

Quantum Chemistry	Electrochemistry
$E = hv = hc/\lambda$	$\Delta G^{\circ} = -nFE^{\circ}$
$\lambda = h/mv$	Moles of $e^- = It/F$
$E = -Z^2 E_{\rm R}(1/n^2)$	$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$
$\Delta x \cdot \Delta(mv) \ge h/4\pi$	$= E^{\circ} - (RT/nF) \times \ln Q$
$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	$E^{\circ} = (RT/nF) \times 2.303 \log K$
$T \lambda = 2.898 \times 10^6 \text{ K nm}$	$= (RT/nF) \times \ln K$
	$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$
Acids and Bases	Gas Laws
$pK_{\rm w} = pH + pOH = 14.00$	PV = nRT
$\mathbf{p}K_{\mathrm{w}} = \mathbf{p}K_{\mathrm{a}} + \mathbf{p}K_{\mathrm{b}} = 14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$
$pH = pK_a + \log\{[A^-] / [HA]\}$	$E_{\rm k} = \frac{1}{2}mv^2$
Radioactivity	Kinetics
$t_{1/2} = \ln 2/\lambda$	$t_{\frac{1}{2}} = \ln 2/k$
$A = \lambda N$	$k = A e^{-Ea/RT}$
$\ln(N_0/N_t) = \lambda t$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_{o} - kt$
14 C age = 8033 ln(A_0/A_t) years	$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$
Colligative Properties & Solutions	Thermodynamics & Equilibrium
$\Pi = cRT$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$\Delta G = \Delta G^{\circ} + RT \ln Q$
c = kp	$\Delta G^{\circ} = -RT \ln K$
$\Delta T_{ m f} = K_{ m f} m$	$\Delta_{\rm univ}S^\circ = R\ln\!K$
$\Delta T_{\rm b} = K_{\rm b} m$	$\ln \frac{K_{2}}{K_{1}} = \frac{-\Delta H^{\circ}}{R} \left(\frac{1}{T_{2}} - \frac{1}{T_{1}} \right)$
Miscellaneous	Mathematics
$A = -\log \frac{I}{I_0}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
$A = \varepsilon c l$	$\ln x = 2.303 \log x$
$F = A - \frac{e^2}{N}$	Area of circle = πr^2
$L = -A \frac{1}{4\pi\varepsilon_0 r} N_A$	Surface area of sphere = $4\pi r^2$

PERIODIC TABLE OF THE ELEMENTS

1	2	3	4	5	6	7	8	9	10	11	1	2	13	14	15	16	17	18
1 нуdrogen Н 1.008																		2 нешим Не 4.003
3	4												5	6	7	8	9	10
Li	BERYLLIUM												BORON	CARBON	NIIROGEN	OXIGEN	F	Ne
6.941	9.012												10.81	12.01	14.01	16.00	19.00	20.18
11	12												13	14	15	16	17	18
Na	MAGNESIUM Mø												ALUMINIUM	SILICON	PHOSPHORUS	SULFUR		Argon
22.99	24.31												26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	3	0	31	32	33	34	35	36
POTASSIUM		SCANDIUM	TITANIUM	VANADIUM V	Снкомии	MANGANESE	Fe	COBALT	NICKEL		ZI	nc Z n	GALLIUM	GERMANIUM	ARSENIC	Selenium	BROMINE	KRYPTON Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65	.39	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	4	8	49	50	51	52	53	54
RUBIDIUM Rh	STRONTIUM	VTTRIUM V		NIOBIUM	MOLYBDENUM	тесниетии	RUTHENIUM R11	RHODIUM Rh	PALLADIUM Pd	SILVER A o	CAD	мим 'd	INDIUM	Sn	Sh	Tellurium	IODINE	XENON
85.47	87.62	88.91	91.22	92.91	95.94	[98.91]	101.07	102.91	106.4	107.8	7 112	2.40	114.82	118.69	121.75	127.60	126.90	131.30
55	56	57-71	72	73	74	75	76	77	78	79	8	0	81	82	83	84	85	86
CAESIUM	BARIUM Rg		HAFNIUM	TANTALUM	TUNGSTEN	RHENIUM Ro		IRIDIUM Tr	PLATINUM Dt		MER	CURY G	THALLIUM	LEAD Ph	візмитн		ASTATINE A T	RADON Rn
132.91	137.34		178.49	180.95	183.85	186.2	190.2	192.22	195.09	196.9	7 200	-g).59	204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
87	88	89-103	3 104	105	106	107	108	109	110	111	11	12						
FRANCIUM Fr			RUTHERFORDIU Rf	M DUBNIUM	SEABORGIUM So	BOHRIUM Bh	HASSIUM HS	MEITNERIUM Mf	DARMSTADTIUM	ROENTGEN	UM COPER	nicium 'n						
[223.0]	[226.0]		[261]	[262]	[266]	[262]	[265]	[266]	[271]	[272]	[28	83]						
													1					
	5	7	58	59	60	61	62	63	64	1	65		66	67	68	69	70	71
LANTHANO	IDS LANTE	IANUM		RASEODYMIUM Dr	NEODYMIUM	PROMETHIUM Dm	SAMARIUM	EUROPIU	GADOLI	NIUM	TERBIUM Th	DYS			ERBIUM	THULIUM	VTTERBIUM Vh	LUTETIUM
	138	a 3.91 1	40.12	1 140.91	1 44 .24	1 111 [144.9]	150.4	151.9	6 157.	u 25	158.93	16	Dy 52.50	164.93	167.26	168.93	173.04	174.97
	8	9	90	91	92	93	94	95	96	5	97		98	99	100	101	102	103
ACTINOID	S ACTI	NIUM T	Th	PROTACTINIUM Do	URANIUM T	NEPTUNIUM	PLUTONIUM D17	AMERICIU		л в	ERKELLIUM	CAL			FERMIUM	MENDELEVIUM	NOBELIUM	
	[22]	7.0] 2	32.04	1 a [231.0]	238.03	[237.0]	[239.1]	[243.1	[247	.1]	247.1]	[2	52.1]	[252.1]	[257.1]	[256.1]	[259.1]	[260.1]