#### Topics in the November 2014 Exam Paper for CHEM1101

Click on the links for resources on each topic.

2014-N-2:

- Wave Theory of Electrons and Resulting Atomic Energy Levels
- Shape of Atomic Orbitals and Quantum Numbers
- Filling Energy Levels in Atoms Larger than Hydrogen
- Band Theory MO in Solids

#### 2014-N-3:

- Periodic Table and the Periodic Trends
- Wave Theory of Electrons and Resulting Atomic Energy Levels

2014-N-4:

Nuclear and Radiation Chemistry

2014-N-5:

- Wave Theory of Electrons and Resulting Atomic Energy Levels
- Atomic Electronic Spectroscopy

2014-N-7:

- Lewis Structures
- VSEPR
- Types of Intermolecular Forces

2014-N-8:

- Bonding MO theory (H<sub>2</sub>)
- Bonding MO theory (larger molecules)

2014-N-9:

Thermochemistry

2014-N-10:

- Chemical Equilibrium
- First and Second Law of Thermodynamics

2014-N-11:

- Gas Laws
- Thermochemistry
- First and Second Law of Thermodynamics

2014-N-12:

Chemical Equilibrium

2014-N-13:

• Equilibrium and Thermochemistry in Industrial Processes

2014-N-14:

Electrochemistry

2014-N-15:

• Electrolytic Cells

2014-N-16:

• Electrochemistry



#### Confidential

## CHEM1101 Chemistry 1A

# Final Examination Semester 2, 2014

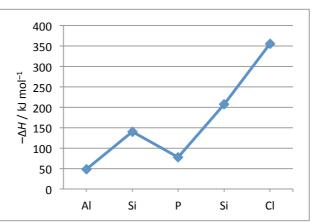
### Time Allowed: Three hours + 10 minutes reading time

This examination paper consists of 28 pages.

#### INSTRUCTIONS TO CANDIDATES

- 1. This is a closed book exam.
- 2. A simple calculator (programmable versions and PDA's not allowed) may be taken into the exam room.

| Make | Model |
|------|-------|
|      |       |


- 3. The total score for this paper is 100. The possible score per page is shown in the adjacent table.
- The paper comprises 28 multiple choice questions and 15 pages of short answer questions. ANSWER ALL QUESTIONS.
- 5. Follow the instructions on page 2 to record your answers to the multiple choice questions. Use a dark lead pencil so that you can erase errors made on the computer sheet.
- 6. Answer all short answer questions in the spaces provided on this question paper. Credit may not be given where there is insufficient evidence of the working required to obtain the solution.
- 7. Take care to write legibly. Write your final answers in ink, not pencil.
- 8. Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.

|         | Marks |      |    |        |
|---------|-------|------|----|--------|
| Page(s) | Max   | Gain | ed | Marker |
| 2-10    | -28   |      |    | MCQ    |
| 11      | 6     |      |    |        |
| 12      | 7     |      |    |        |
| 13      | 6     |      |    |        |
| 14      | 3     |      |    |        |
| 15      | 3     |      |    |        |
| 16      | 9     |      |    |        |
| 17      | 3     |      |    |        |
| 19      | 2     |      |    |        |
| 20      | 3     |      |    |        |
| 21      | 5     |      |    |        |
| 23      | 5     |      |    |        |
| 24      | 4     |      |    |        |
| 25      | 6     |      |    |        |
| 26      | 7     |      |    |        |
| 27      | 3     |      |    |        |
| Total   | 72    |      |    |        |
| Check   | Total |      |    |        |

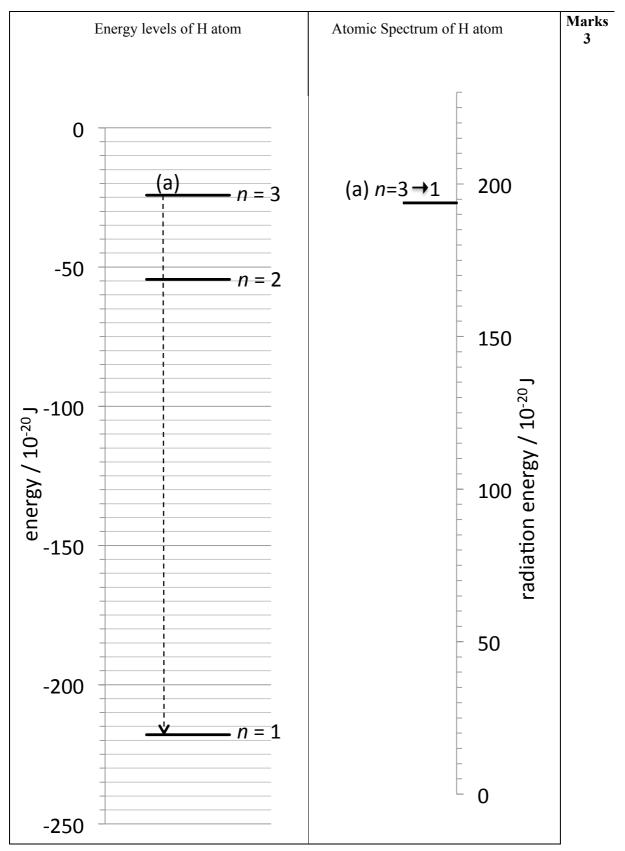
Marks • Consider the 4p orbital shown below. Note that, for clarity, the nucleus of the atom is 3 not shown. How many spherical and planar nodes does this orbital have? Number of spherical nodes: Number of planar nodes: Complete the following table to give a set of quantum numbers that describes an electron in a 4*p* orbital. Quantum number п 4 Value • What factors determine the lattice energy of an ionic crystal? 3

## THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

 Electron affinity is the enthalpy change for the reaction A(g) + e → A<sup>-</sup>(g). The graph below shows the trend in electron affinities for a sequence of elements in the third row of the Periodic Table.



Give the electron configurations of the following atoms and singly-charged anions. Use [Ne] to represent core electrons.


| Atom | Electron configuration | Ion             | Electron configuration |
|------|------------------------|-----------------|------------------------|
| Si   |                        | Si <sup>-</sup> |                        |
| Р    |                        | P <sup>-</sup>  |                        |
| S    |                        | $S^-$           |                        |

Explain why the value for the electron affinity of phosphorus is anomalous.

What trend would you expect for the electron affinities for Si<sup>-</sup>, P<sup>-</sup> and S<sup>-</sup>? Explain your answer.

| ne half-life of <sup>60</sup> Co is 5 ye                                                                                                                                                                                                                                                  | ears. Calculate the           | e value of the | e decay cor | istant, $\lambda$ , (in s <sup>-1</sup> ). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------|-------------|--------------------------------------------|
|                                                                                                                                                                                                                                                                                           |                               |                | <u> </u>    |                                            |
|                                                                                                                                                                                                                                                                                           |                               |                |             |                                            |
|                                                                                                                                                                                                                                                                                           |                               |                |             |                                            |
|                                                                                                                                                                                                                                                                                           | Ans                           | wer:           |             |                                            |
| hat is the molar activity                                                                                                                                                                                                                                                                 | of <sup>60</sup> Co (in Bq mo | $^{-1})?$      |             |                                            |
|                                                                                                                                                                                                                                                                                           |                               |                |             |                                            |
|                                                                                                                                                                                                                                                                                           |                               |                |             |                                            |
|                                                                                                                                                                                                                                                                                           |                               |                |             |                                            |
|                                                                                                                                                                                                                                                                                           |                               |                |             |                                            |
|                                                                                                                                                                                                                                                                                           |                               |                |             |                                            |
|                                                                                                                                                                                                                                                                                           |                               |                |             |                                            |
|                                                                                                                                                                                                                                                                                           |                               |                |             |                                            |
|                                                                                                                                                                                                                                                                                           | Ans                           | wer:           |             |                                            |
| omplete the graph below.                                                                                                                                                                                                                                                                  |                               | wer:           |             |                                            |
| 1.0                                                                                                                                                                                                                                                                                       |                               | wer:           |             |                                            |
| 0.10       0.9         0.9       0.9         0.8       0.7         0.6       0.6         0.5       0.6         0.4       0.3         0.2       0.2                                                                                                                                        |                               | wer:           |             |                                            |
| 0.1     0.1       0.1     0.1       0.1     0.1       0.1     0.1       0.1     0.1       0.1     0.1       0.1     0.1       0.1     0.1       0.1     0.1       0.1     0.1       0.1     0.1       0.1     0.1       0.1     0.1       0.1     0.1       0.1     0.1       0.1     0.1 |                               | wer:           |             |                                            |
| 0.10       0.9         0.9       0.9         0.8       0.7         0.6       0.6         0.5       0.6         0.4       0.3         0.2       0.2                                                                                                                                        |                               |                |             |                                            |
| 0.1     0.1       0.1     0.1       0.1     0.1       0.1     0.1       0.1     0.1       0.1     0.1       0.1     0.1       0.1     0.1       0.1     0.1       0.1     0.1       0.1     0.1       0.1     0.1       0.1     0.1       0.1     0.1       0.1     0.1       0.1     0.1 |                               | wer:           |             |                                            |

| -      | diagram on the<br>ogen atom. C                         |              |       |        |        |     |        | Marks<br>3 |
|--------|--------------------------------------------------------|--------------|-------|--------|--------|-----|--------|------------|
| (A)    | Indicate all p ground state.                           |              |       |        |        |     | to the |            |
| (B)    | Calculate the diagram on the shown as an               | he right on  |       |        |        |     |        |            |
| Workin | g                                                      |              |       |        |        |     |        |            |
|        |                                                        |              |       |        |        |     |        |            |
|        |                                                        |              |       |        |        |     |        |            |
|        |                                                        |              |       |        |        |     |        |            |
|        |                                                        |              |       |        |        |     |        |            |
| asso   | all of the trans<br>ciated with eac<br>elengths is sho | ch. For refe |       |        |        |     | [      |            |
| UV     | violet                                                 | blue         | green | yellow | orange | red | IR     | -          |
|        |                                                        |              |       |        | 90 63  |     | 00 nm  |            |
|        |                                                        |              |       |        |        |     |        |            |
|        | e correspondin                                         |              |       |        |        |     | l they |            |
|        | e correspondin<br>ir at longer or s                    |              |       |        |        |     | l they |            |

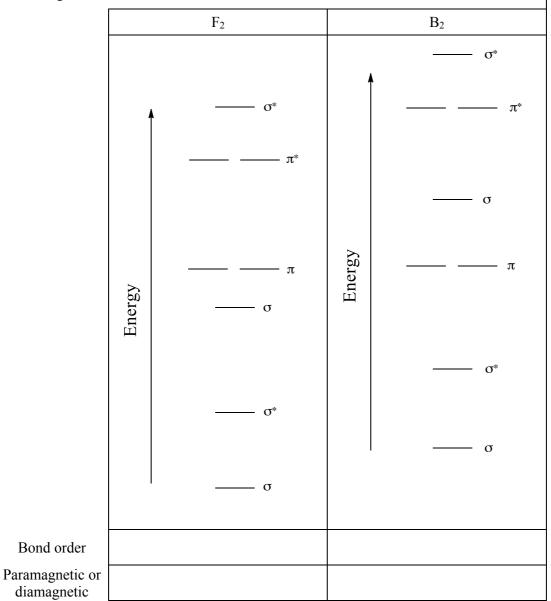


Marks

4

• Draw the Lewis structure of the following species. The central atom is underlined. Give resonance structures where applicable and indicate whether the species has a dipole moment?

| Species                              | Lewis structure | Dipole moment |
|--------------------------------------|-----------------|---------------|
| <u>S</u> F <sub>4</sub>              |                 | Yes / No      |
| <u>N</u> O <sub>2</sub> <sup>-</sup> |                 | Yes / No      |


• Complete the table concerning two of the isomers of C<sub>3</sub>H<sub>6</sub>O<sub>2</sub>. Identify the geometry around each atom marked with an asterisk and the list the major intermolecular forces present in the liquid.

| Isomer                                      | А                                              | В                                                     |
|---------------------------------------------|------------------------------------------------|-------------------------------------------------------|
| Chemical<br>structure                       | H H O<br>       *<br>H—C—C—C—O—H<br>   <br>H H | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |
| Geometry                                    |                                                |                                                       |
| Major<br>intermolecular<br>forces in liquid |                                                |                                                       |

The boiling point of isomer A is 141 °C and that of isomer B is 60 °C. Explain why the boiling point of A is higher than B?

5

- The molecular orbital energy level diagrams for  $F_2$  and  $B_2$  are shown below. Fill in the valence electrons for each species in its ground state. Hence calculate the bond order for F2 and B2 and indicate whether these molecules are paramagnetic or diamagnetic.



| • | piece of |                                                 | ping molten lead into a tank of water. A<br>d into 200.0 mL of water raising its<br>the weight of the lead? | Marks<br>2 |
|---|----------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------|
|   | Data:    | Specific heat capacity of Pb is 0.12            | $26 \text{ J } \text{K}^{-1} \text{g}^{-1}$                                                                 |            |
|   |          | Specific heat capacity of $H_2O(l)$ is          | $4.184 \text{ J } \text{K}^{-1}\text{g}^{-1}$                                                               |            |
|   |          | The density of water is $1.0 \text{ g mL}^{-1}$ |                                                                                                             |            |
|   |          |                                                 |                                                                                                             |            |
|   |          |                                                 |                                                                                                             |            |
|   |          |                                                 |                                                                                                             |            |
|   |          |                                                 |                                                                                                             |            |
|   |          |                                                 |                                                                                                             |            |
|   |          |                                                 |                                                                                                             |            |
|   |          |                                                 |                                                                                                             |            |
|   |          |                                                 |                                                                                                             |            |
|   |          |                                                 |                                                                                                             |            |
|   |          |                                                 |                                                                                                             |            |
|   |          |                                                 |                                                                                                             |            |
|   |          |                                                 |                                                                                                             |            |
|   |          |                                                 |                                                                                                             |            |
|   |          |                                                 |                                                                                                             |            |
|   |          |                                                 | [                                                                                                           | _          |
|   |          |                                                 | Answer:                                                                                                     |            |

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

Marks • Use the following equilibria: 2  $K_1 = 9.5 \times 10^{-13}$  $2CH_4(g) \rightleftharpoons C_2H_6(g) + H_2(g)$  $K_2 = 2.8 \times 10^{-21}$  $CH_4(g) \ + \ H_2O(g) \ \rightleftharpoons \ CH_3OH(g) \ + \ H_2(g)$ to calculate the equilibrium constant,  $K_3$ , for the following reaction.  $2CH_3OH(g) + H_2(g) \rightleftharpoons C_2H_6(g) + 2H_2O(g)$ Show all working. Answer: 1 • The Second Law states that all observable processes must involve a net increase in entropy. When liquid water freezes into ice at 0 °C, the entropy of the water decreases. Since the freezing of water is certainly observable, the processes must still satisfy the Second Law. Provide a brief explanation of how this is so.

Marks • Ethanol, C<sub>2</sub>H<sub>5</sub>OH(l), is increasingly being used as a fuel. Give the balanced chemical 5 equation for the combustion of ethanol in oxygen to produce carbon dioxide and water. Use the standard enthalpies of formation given below to calculate the molar heat of combustion of gaseous ethanol. Show all working.  $C_2H_5OH(g)$ Compound  $CO_2(g)$  $H_2O(g)$  $\Delta_{\rm f} H^{\circ} / \rm kJ \ mol^{-1}$ -235.3 -393.5 -285.8Answer: Calculate the volume change when 150 g of liquid ethanol is burnt in an engine at 1500 °C and 2.0 atm pressure. Assume all gases behave as ideal gases. Show all working. Answer: Why can the volume occupied by the liquid ethanol be ignored in this calculation?

| • The standard Gibbs free energy of the following reaction is $+69.73 \text{ kJ mol}^{-1}$ .                                                                                                                     | Marks<br>5 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| $\operatorname{COCl}_2(g) \rightleftharpoons \operatorname{CO}(g) + \operatorname{Cl}_2(g)$                                                                                                                      |            |
| What is the expression for the equilibrium constant, $K_{p}$ , for this reaction?                                                                                                                                |            |
|                                                                                                                                                                                                                  |            |
|                                                                                                                                                                                                                  |            |
|                                                                                                                                                                                                                  |            |
|                                                                                                                                                                                                                  |            |
|                                                                                                                                                                                                                  |            |
| Calculate the value of the equilibrium constant at 298 K.                                                                                                                                                        |            |
|                                                                                                                                                                                                                  |            |
|                                                                                                                                                                                                                  |            |
|                                                                                                                                                                                                                  |            |
|                                                                                                                                                                                                                  |            |
|                                                                                                                                                                                                                  |            |
|                                                                                                                                                                                                                  |            |
|                                                                                                                                                                                                                  |            |
|                                                                                                                                                                                                                  |            |
|                                                                                                                                                                                                                  |            |
| $K_{\rm p} =$                                                                                                                                                                                                    |            |
|                                                                                                                                                                                                                  |            |
| In which direction will this reaction proceed if a mixture of gases is made with:<br>$P_{\text{COCl}_2} = 1.00 \text{ atm}; P_{\text{Cl}_2} = 0.01 \text{ atm}; P_{\text{CO}} = 0.50 \text{ atm}?$ Show working. |            |
|                                                                                                                                                                                                                  |            |
|                                                                                                                                                                                                                  |            |
|                                                                                                                                                                                                                  |            |
|                                                                                                                                                                                                                  |            |
|                                                                                                                                                                                                                  |            |
|                                                                                                                                                                                                                  |            |
|                                                                                                                                                                                                                  |            |
|                                                                                                                                                                                                                  |            |

Marks • The diagram below represents the equilibrium constant  $K_p$  associated with the 4 formation of the four oxides indicated. 50  $\frac{4}{3}$ Al + O<sub>2</sub>  $\rightleftharpoons$   $\frac{2}{3}$ Al<sub>2</sub>O<sub>3</sub> 40  $\ln K_{p}$  $2Sn + O_2 \rightleftharpoons 2SnO$ 30  $2Zn + O_2 \rightleftharpoons 2ZnO$ 20  $2C + O_2 \rightleftharpoons 2CO$ 10 0 600 0 200 400 800 1000 Temperature (°C) Using the equilibrium constant data above, describe the reaction that proceeds under the following conditions. If you think no reaction will occur, write 'no reaction'. CO and Sn are combined at 400 °C Al and SnO are combined at 400 °C C and ZnO are mixed at 900 °C Which oxide has the largest (most negative) enthalpy of formation?

| • An electrochemical cell consisting of a N $Cu^{2+}/Cu$ half-cell with $[Cu^{2+}] = 2.5$ M has the initial concentration of Ni <sup>2+</sup> in the Ni <sup>2</sup> | $Ii^{2+}/Ni$ half-cell with unknown $[Ni^{2+}]$ and a s a cell voltage of 0.64 V at 298 K. What is $I^{2+}/Ni$ half-cell? |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                      |                                                                                                                           |
|                                                                                                                                                                      |                                                                                                                           |
|                                                                                                                                                                      |                                                                                                                           |
|                                                                                                                                                                      |                                                                                                                           |
|                                                                                                                                                                      |                                                                                                                           |
|                                                                                                                                                                      |                                                                                                                           |
|                                                                                                                                                                      | Answer:                                                                                                                   |
| Calculate the equilibrium constant for the                                                                                                                           |                                                                                                                           |
|                                                                                                                                                                      |                                                                                                                           |
|                                                                                                                                                                      |                                                                                                                           |
|                                                                                                                                                                      |                                                                                                                           |
|                                                                                                                                                                      | Answer:                                                                                                                   |
| Calculate the standard Gibbs free energy                                                                                                                             |                                                                                                                           |
|                                                                                                                                                                      |                                                                                                                           |
|                                                                                                                                                                      |                                                                                                                           |
|                                                                                                                                                                      |                                                                                                                           |
|                                                                                                                                                                      |                                                                                                                           |
|                                                                                                                                                                      | Answer:                                                                                                                   |

|                                                                                                       | s of an aqueous sodium chloride solution<br>are formed at the anode and cathode? Explain | Marks<br>7 |
|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------|
|                                                                                                       |                                                                                          |            |
|                                                                                                       |                                                                                          |            |
|                                                                                                       |                                                                                          |            |
|                                                                                                       | Answer:                                                                                  |            |
| Write a balanced equation for the overall                                                             | reaction of the electrolytic cell.                                                       |            |
|                                                                                                       |                                                                                          |            |
|                                                                                                       |                                                                                          |            |
|                                                                                                       |                                                                                          |            |
|                                                                                                       |                                                                                          |            |
|                                                                                                       |                                                                                          |            |
| Assuming a [Cl <sup>-</sup> ] of 1.0 M and no overport<br>required to drive the overall cell reaction | otential, what would be the minimum voltage at pH 14? Assume gases are at 1 atm.         |            |
|                                                                                                       |                                                                                          |            |
|                                                                                                       |                                                                                          |            |
|                                                                                                       |                                                                                          |            |
|                                                                                                       |                                                                                          |            |
|                                                                                                       |                                                                                          |            |
|                                                                                                       |                                                                                          |            |
|                                                                                                       | Answer:                                                                                  |            |
| Considering the cell potentials suggest a employed in this reaction rather than carb                  |                                                                                          |            |
|                                                                                                       |                                                                                          |            |
|                                                                                                       |                                                                                          |            |
|                                                                                                       |                                                                                          |            |
|                                                                                                       |                                                                                          |            |
|                                                                                                       |                                                                                          | ]          |

| 2.5 M CuSO <sub>4</sub> and 0.025 N | CuSO <sub>4</sub> at 298 K?             |  |
|-------------------------------------|-----------------------------------------|--|
|                                     |                                         |  |
|                                     |                                         |  |
|                                     |                                         |  |
|                                     | Answer:                                 |  |
| Explain the changes neces           | sary for the cell to reach equilibrium. |  |
|                                     |                                         |  |
|                                     |                                         |  |
|                                     |                                         |  |
|                                     |                                         |  |
|                                     |                                         |  |

# THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

THIS PAGE IS FOR ROUGH WORKING ONLY

#### **DATA SHEET**

 $Physical \ constants$ Avogadro constant,  $N_{\rm A} = 6.022 \times 10^{23} \ {\rm mol}^{-1}$ Faraday constant,  $F = 96485 \ {\rm C} \ {\rm mol}^{-1}$ Planck constant,  $h = 6.626 \times 10^{-34} \ {\rm J} \ {\rm s}$ Speed of light in vacuum,  $c = 2.998 \times 10^8 \ {\rm m} \ {\rm s}^{-1}$ Rydberg constant,  $E_{\rm R} = 2.18 \times 10^{-18} \ {\rm J}$ Boltzmann constant,  $k_{\rm B} = 1.381 \times 10^{-23} \ {\rm J} \ {\rm K}^{-1}$ Permittivity of a vacuum,  $\varepsilon_0 = 8.854 \times 10^{-12} \ {\rm C}^2 \ {\rm J}^{-1} \ {\rm mol}^{-1}$ Gas constant,  $R = 8.314 \ {\rm J} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ Charge of electron,  $e = 1.602 \times 10^{-19} \ {\rm C}$ Mass of electron,  $m_{\rm e} = 9.1094 \times 10^{-31} \ {\rm kg}$ Mass of proton,  $m_{\rm p} = 1.6726 \times 10^{-27} \ {\rm kg}$ 

#### Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm<sup>-3</sup>

| Conversion factors                               |                                                 |
|--------------------------------------------------|-------------------------------------------------|
| 1 atm = 760 mmHg = 101.3 kPa                     | $1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$ |
| 0 °C = 273 K                                     | $1 \text{ Hz} = 1 \text{ s}^{-1}$               |
| $1 L = 10^{-3} m^3$                              | 1 tonne = $10^3$ kg                             |
| $1 \text{ Å} = 10^{-10} \text{ m}$               | $1 \text{ W} = 1 \text{ J s}^{-1}$              |
| $1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$ |                                                 |

| Decimal fractions |        | Deci   | Decimal multiples |        |        |
|-------------------|--------|--------|-------------------|--------|--------|
| Fraction          | Prefix | Symbol | Multiple          | Prefix | Symbol |
| $10^{-3}$         | milli  | m      | $10^{3}$          | kilo   | k      |
| 10 <sup>-6</sup>  | micro  | μ      | $10^{6}$          | mega   | Μ      |
| $10^{-9}$         | nano   | n      | 10 <sup>9</sup>   | giga   | G      |
| $10^{-12}$        | pico   | р      | $10^{12}$         | tera   | Т      |

Standard Reduction Potentials, E°

| Reaction                                                                                                                                                                                              | $E^{\circ}$ / V |                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------|
| $\operatorname{Co}^{3+}(\operatorname{aq}) + e^{-} \rightarrow \operatorname{Co}^{2+}(\operatorname{aq})$                                                                                             | +1.82           |                   |
| $\operatorname{Ce}^{4+}(\operatorname{aq}) + e^{-} \rightarrow \operatorname{Ce}^{3+}(\operatorname{aq})$                                                                                             | +1.72           |                   |
| $MnO_{4}^{-}(aq) + 8H^{+}(aq) + 5e^{-} \rightarrow Mn^{2+}(aq) + 4H_{2}O$                                                                                                                             | +1.51           |                   |
| $Au^{3+}(aq) + 3e^- \rightarrow Au(s)$                                                                                                                                                                | +1.50           |                   |
| $Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$                                                                                                                                                                   | +1.36           |                   |
| $O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$                                                                                                                                                             | +1.23           | (+0.82 at pH = 7) |
| $Pt^{2+}(aq) + 2e^{-} \rightarrow Pt(s)$                                                                                                                                                              | +1.18           |                   |
| $MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$                                                                                                                                               | +0.96           |                   |
| $NO_3^-(aq) + 4H^+(aq) + 3e^- \rightarrow NO(g) + 2H_2O$                                                                                                                                              | +0.96           |                   |
| $Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$                                                                                                                                                              | +0.92           |                   |
| $Ag^+(aq) + e^- \rightarrow Ag(s)$                                                                                                                                                                    | +0.80           |                   |
| $Fe^{3+}(aq) + e^{-} \rightarrow Fe^{2+}(aq)$                                                                                                                                                         | +0.77           |                   |
| $I_2(aq) + 2e^- \rightarrow 2I^-(aq)$                                                                                                                                                                 | +0.62           |                   |
| $Cu^+(aq) + e^- \rightarrow Cu(s)$                                                                                                                                                                    | +0.53           |                   |
| $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$                                                                                                                                                              | +0.34           |                   |
| $\operatorname{BiO}^{+}(\operatorname{aq}) + 2\operatorname{H}^{+}(\operatorname{aq}) + 3\operatorname{e}^{-} \rightarrow \operatorname{Bi}(\operatorname{s}) + \operatorname{H}_{2}\operatorname{O}$ | +0.32           |                   |
| $\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$                                                                                            | +0.15           |                   |
| $2\mathrm{H}^{+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{g})$                                                                                                               | 0 (by c         | lefinition)       |
| $Fe^{3+}(aq) + 3e^- \rightarrow Fe(s)$                                                                                                                                                                | -0.04           |                   |
| $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$                                                                                                                                                              | -0.13           |                   |
| $\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$                                                                                                                 | -0.14           |                   |
| $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$                                                                                                                                                              | -0.24           |                   |
| $\mathrm{Cd}^{2+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{Cd}(\mathrm{s})$                                                                                                                 | -0.40           |                   |
| $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$                                                                                                                                                              | -0.44           |                   |
| $\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Cr}(s)$                                                                                                                 | -0.74           |                   |
| $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$                                                                                                                                                              | -0.76           |                   |
| $2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$                                                                                                                                                         | -0.83           | (-0.41 at pH = 7) |
| $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$                                                                                                                                                              | -0.89           |                   |
| $Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$                                                                                                                                                              | -1.68           |                   |
| $\operatorname{Sc}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Sc}(s)$                                                                                                                 | -2.09           |                   |
| $Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$                                                                                                                                                              | -2.36           |                   |
| $Na^+(aq) + e^- \rightarrow Na(s)$                                                                                                                                                                    | -2.71           |                   |
| $Ca^{2+}(aq) + 2e^{-} \rightarrow Ca(s)$                                                                                                                                                              | -2.87           |                   |
| $Li^+(aq) + e^- \rightarrow Li(s)$                                                                                                                                                                    | -3.04           |                   |

| Thermodynamics & Equilibrium                                                                   | Electrochemistry                                                                   |
|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| $\Delta U = q + w = q - p\Delta V$                                                             | $\Delta G^{\circ} = -nFE^{\circ}$                                                  |
| $\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$                                     | Moles of $e^- = It/F$                                                              |
| $\Delta G = \Delta G^{\circ} + RT \ln Q$                                                       | $E = E^{\circ} - (RT/nF) \times 2.303 \log Q$                                      |
| $\Delta G^{\circ} = -RT \ln K$                                                                 | $= E^{\circ} - (RT/nF) \times \ln Q$                                               |
| $\Delta_{\rm univ}S^\circ = R \ln K$                                                           | $E^{\circ} = (RT/nF) \times 2.303 \log K$                                          |
| $\ln \frac{K_2}{K_1} = \frac{-\Delta H^\circ}{R} \left( \frac{1}{T_2} - \frac{1}{T_1} \right)$ | $= (RT/nF) \times \ln K$                                                           |
| $\frac{1}{K_1} = \frac{1}{R} \left( \frac{1}{T_2} - \frac{1}{T_1} \right)$                     | $E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$                       |
| Acids and Bases                                                                                | Gas Laws                                                                           |
| $pK_{\rm w} = pH + pOH = 14.00$                                                                | PV = nRT                                                                           |
| $pK_w = pK_a + pK_b = 14.00$                                                                   | $(P+n^2a/V^2)(V-nb) = nRT$                                                         |
| $pH = pK_a + \log\{[A^-] / [HA]\}$                                                             | $E_{\rm k} = \frac{1}{2}mv^2$                                                      |
| Radioactivity                                                                                  | Kinetics                                                                           |
| $t_{1/2} = \ln 2/\lambda$                                                                      | $t_{\frac{1}{2}} = \ln 2/k$                                                        |
| $A = \lambda N$                                                                                | $k = A e^{-Ea/RT}$                                                                 |
| $\ln(N_0/N_t) = \lambda t$                                                                     | $\ln[\mathbf{A}] = \ln[\mathbf{A}]_{\rm o} - kt$                                   |
| $^{14}$ C age = 8033 ln( $A_0/A_t$ ) years                                                     | $\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left( \frac{1}{T_1} - \frac{1}{T_2} \right)$ |
| Mathematics                                                                                    | Quantum Chemistry                                                                  |
| $-b \pm \sqrt{b^2 - 4ac}$                                                                      | $E = hv = hc/\lambda$                                                              |
| If $ax^2 + bx + c = 0$ , then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$                         | $\lambda = h/mv$                                                                   |
| $\ln x = 2.303 \log x$                                                                         | $E = -Z^2 E_{\rm R}(1/n^2)$                                                        |
| Area of circle = $\pi r^2$                                                                     | $\Delta x \cdot \Delta(mv) \ge h/4\pi$                                             |
| Surface area of sphere = $4\pi r^2$                                                            | $q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$                               |
| Volume of sphere = $\frac{4}{3} \pi r^3$                                                       | $T\lambda = 2.898 \times 10^6 \text{ K nm}$                                        |
| Miscellaneous                                                                                  | Colligative Properties & Solutions                                                 |
| $A = -\log \frac{I}{I_0}$                                                                      | $\Pi = cRT$                                                                        |
|                                                                                                | $P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$       |
| $A = \varepsilon c l$                                                                          | $\mathbf{c} = k\mathbf{p}$                                                         |
| $E = -A \frac{e^2}{4\pi\varepsilon_0 r} N_{\rm A}$                                             | $\Delta T_{\rm f} = K_{\rm f} m$                                                   |
| $2 4\pi\varepsilon_0 r^{1/A}$                                                                  | $\Delta T_{\rm b} = K_{\rm b} m$                                                   |

| LANTHANOIDS<br>ACTINOIDS                                                                       | 1<br>иговосая<br>Н<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.008<br>1.00 | 1  |
|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 138.91<br>s Алтиличи<br>Бранки 138.91<br>s Астичим<br>S Ас<br>[227.0]                          | 4<br>веропа<br>12<br>масявани<br>12<br>масявани<br>12<br>масявани<br>12<br>12<br>масявани<br>12<br>24.31<br>24.31<br>24.31<br>24.31<br>24.31<br>24.30<br>солстим<br>Sr<br>87.62<br>56<br>волова<br>88<br>8<br>волова<br>24.31<br>23<br>137.34<br>88<br>8<br>волова<br>137.34<br>82<br>80<br>83<br>83<br>83<br>83<br>83<br>83<br>83<br>83<br>83<br>83<br>83<br>83<br>83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2  |
|                                                                                                | 21<br>scavation<br>Sc<br>44.96<br>39<br>YTTRUM<br>FT<br>88.91<br>57-71<br>57-71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ω  |
| 58<br>CeRUIM<br>P<br>Ce<br>140,12<br>90<br>Thoseum<br>Th<br>232.04                             | 22<br>ттахион<br><b>Ті</b><br>47.88<br>40<br>длесомим<br><b>2</b> г<br>91.22<br>72<br>нажизм<br><b>1</b> 72<br>нажизм<br><b>1</b> 72<br>нажизм<br><b>1</b> 72<br>нажизм<br><b>1</b> 72<br>нажизм<br><b>1</b> 72<br>нажизм<br><b>1</b> 72<br><b>1</b> 74<br>(178,49)<br><b>1</b> 174<br><b>1</b> 78,49<br><b>1</b> 178,49<br><b>1</b> 104<br><b>1</b> 178,49<br><b>1</b> 104<br><b>1</b> 178,49<br><b>1</b> 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4  |
| 59<br>Раковолици<br><b>Рг</b><br>140.91<br>91<br>реогистимим<br><b>Ра</b><br>[231.0]           | 23<br>Vамания<br>V<br>50.94<br>41<br>Nomuna<br>V<br>50.94<br>41<br>Nomuna<br>Nb<br>92.91<br>73<br>Та<br>180.95<br>105<br>105<br>105<br>262]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | J  |
| 60<br>моюумим<br>Nd<br>144.24<br>92<br>ивалием<br>U<br>238.03                                  | 24<br>ствоящая<br>Сг<br>52.00<br>95.94<br>74<br>телевтая<br>W<br>183.85<br>106<br>sseaooccied<br>Sg<br>[266]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6  |
| 61<br>риометники<br><b>Рт</b><br>[144.9]<br>93<br>мертикним<br><b>Np</b><br>[237.0]            | 25<br>малализе<br>Мп<br>54.94<br>54.94<br>43<br>тесноватом<br>Тс<br>[98.91]<br>75<br>вшемем<br>Re<br>[86.2<br>107<br>воляетом<br>Bh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Γ  |
| 62<br>samanum<br>Sm<br>150.4<br>94<br>Ри<br>[239.1]                                            | 26<br>mos<br>Fe<br>55.85<br>55.85<br>55.85<br>55.85<br>55.85<br>655.85<br>101.07<br>76<br>05<br>190.2<br>108<br>massing<br>Hs<br>1265]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8  |
| 63<br>енкортим<br>Е<br>151.96<br>95<br>миенстим<br>Ат<br>[243.1]                               | 27<br>совала<br>Со<br>58.93<br>58.93<br>58.93<br>58.93<br>58.93<br>58.93<br>102.91<br>102.91<br>102.91<br>102.22<br>109<br>109.22<br>109<br>109<br>109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9  |
| саносимия<br><b>Gd</b><br>157.25<br>96<br>ссиким<br>С <b>т</b><br>[247.1]                      | 28<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKEL<br>NICKE                                                                                                                                                    | 10 |
| 65<br>тваним<br>5 158.93<br>97<br>векенция<br>В В К<br>1] [247.1]                              | 29<br>corper<br>Cu<br>63.55<br>47<br>super<br>Au<br>107.87<br>79<br>cont<br>Au<br>196.97<br>111<br>111<br>196.97<br>Rg<br>272                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11 |
|                                                                                                | 30<br>znc<br>Zn<br>65.39<br>65.39<br>65.39<br>65.39<br>65.39<br>65.39<br>65.39<br>65.39<br>65.39<br>65.39<br>65.39<br>65.39<br>65.39<br>65.39<br>65.39<br>112.40<br>200.59<br>200.59<br>200.59<br>200.59<br>200.59<br>200.59<br>200.59<br>200.59<br>200.59<br>200.59<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.50<br>200.500                                                                                                                                          | 12 |
| 66<br>рукуновичи<br><b>Dy</b><br>162.50<br>98<br>слигованим<br><b>Cf</b><br>[252.1]            | 5<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13 |
| 67<br>нолжим<br>Но<br>164.93<br>99<br>вихталися<br>Es<br>[252.1]                               | 6<br>сливом<br>С 12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.01<br>12.59<br>12.59<br>12.07<br>2.27<br>12.59<br>12.07<br>2.27<br>12.59<br>12.07<br>12.59<br>12.07<br>12.59<br>12.07<br>12.59<br>12.07<br>12.59<br>12.07<br>12.59<br>12.07<br>12.59<br>12.07<br>12.59<br>12.07<br>12.59<br>12.07<br>12.59<br>12.07<br>12.19<br>12.07<br>12.59<br>12.07<br>12.19<br>12.07<br>12.19<br>12.07<br>12.19<br>12.07<br>12.19<br>12.07<br>12.19<br>12.07<br>12.19<br>12.07<br>12.19<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12.07<br>12 | 14 |
| 68<br>иквития<br>Er<br>167.26<br>100<br>иквипая<br>Fm<br>[257.1]                               | 7<br>NTINOGEN<br>N<br>14.01<br>15<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHOSPHORES<br>PHO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15 |
| 69<br>THULIUM<br><b>Tm</b><br>168.93<br>101<br>MISOLLEVIUM<br>MI<br>(256.1]                    | 8<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16 |
| 70<br>VTTERBRUNN<br><b>Yb</b><br>173.04<br>102<br>Norellinn<br>No<br>[259.1]                   | 9<br>FLIORERE<br>F<br>19.00<br>17<br>CILIORERE<br>CIL<br>35.45<br>35.45<br>35.45<br>35.45<br>35.45<br>BBC<br>79.90<br>53<br>IODINE<br>BC<br>126.90<br>53<br>IODINE<br>BC<br>126.90<br>53<br>IODINE<br>BC<br>135.45<br>AST<br>126.90<br>53<br>IODINE<br>BC<br>135.45<br>AST<br>126.90<br>53<br>IODINE<br>BC<br>126.90<br>53<br>IODINE<br>BC<br>126.90<br>53<br>IODINE<br>AST<br>126.90<br>53<br>IODINE<br>AST<br>126.90<br>53<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODINE<br>IODI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17 |
| 71<br>ілтетим<br><b>Lu</b><br>174.97<br>ілжеесция<br><b>Law</b> еесция<br><b>La</b><br>[260.1] | 2<br>He<br>4.003<br>10<br>Ne<br>20.18<br>18<br>Ar<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>39.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95<br>30.95                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18 |

PERIODIC TABLE OF THE ELEMENTS