CHEMISTRY 1B (CHEM1102) - June 2007

2007-J-2

• When comparing binary acids within the same group, the E-H bond strength determines the acidity. As the atomic size of E becomes larger, the E-H becomes longer and weaker. Thus H⁺ is more readily formed in aqueous solution.

The presence of 2 unpaired electrons makes V^{3+} paramagnetic.

2007-J-3

•

III	II	III
6	6	6
5	9	3
K ⁺	$[Cu(NH_3)_4(H_2O)_2]^{2+}$	cis-[CrCl ₂ (en) ₂] ⁺
$[Fe(CN)_6]^{3-}$	NO_3^-	Cl ⁻

2007-J-4

• 2.22

8.52

3.75

HCOOH (acid)

2007-J-5

Allotropes are different structural forms of the same element.
white phosphorus and red phosphorus, O₂ and O₃, many other examples

• $1.9 \times 10^{-7} \text{ g L}^{-1}$ $7.8 \times 10^{-2} \text{ g L}^{-1}$

2007-J-6

• Rate = $k[Cl_2][NO]$ 180 mol⁻² L² min⁻¹

2007-J-8

- **A:** NaOH / H_2O / heat **B:** H_2 / Pd catalyst
 - **C**: Mg / dry ether **D**: 1. CO₂

•

$$Br \xrightarrow{\Theta} CN$$

 $S_N 1$. S = substitution - the general class of reaction

N = nucleophilic - one nucleophile (Br $^-$) is replaced by another (CN $^-$)

1 = unimolecular - one species takes part in the rate determining step

•

2007-J-10

$$-NH_2$$
 > $-COOH$ > $-CH(CH_3)_2$ > $-H$ (S) $H_2N-CH-CO-NH-CH-COOH$ CH_2OH

 α -helix, β -pleated sheet