CHEMISTRY 1B (CHEM1102) - June 2008

2008-J-2

• The electronic configuration of the Group 1 metals is ns^1 . They are big atoms (atomic size decreases across a period as shielding decreases) and hence the outermost electron is far from the nucleus. They therefore have low ionisation energies.

They are powerful reducing agents as they lose a single electron very easily.

Paramagnetism arises as a result of the presence of 1 or more unpaired electrons.

2008-J-3

• A Lewis acid is an electron pair acceptor. BF₃ possess an empty p-orbital on B. CH₃CH₂OCH₂CH₃ possess a lone pair on O.

$$F \xrightarrow{F} B \xrightarrow{\oplus} O$$

• A catalyst is a substance that increases the rate of a reaction without being consumed in the reaction. A catalyst works by providing an alternative reaction pathway of lower activation energy, E_a .

- The critical temperature (T_c) is the temperature above which a substance cannot exist as a liquid. Thus methane cannot be liquefied at 25 °C.
- Allotropes are different structural forms of the same element.
 white phosphorus and red phosphorus, O₂ and O₃, many other examples

•

II	III	II
4	6	6
7	3	8
2–	3+	0
tetrahedral	octahedral	octahedral
Cl	O and N	Cl and N

2008-J-5

- 8.24
- 0.26 mol

2008-J-6

• Rate =
$$k[H_2][NO]^2$$

 $k = 2.9 \times 10^2 \text{ M}^{-2} \text{ s}^{-1}$
 $4.1 \times 10^{-5} \text{ M s}^{-1}$
NO + NO \longrightarrow N₂O₂ (fast equilibrium) Eq 1
 $H_2 + N_2O_2 \rightarrow N_2O + H_2O$ (slow) Eq 2
 $2NO + H_2 \rightarrow N_2O + H_2O$ Overall stoichiometry is consistent
As Eq 1 is an equilibrium, $K_{eq} = \frac{[N_2O_2]}{[NO]^2} \Rightarrow [N_2O_2] = K_{eq}[NO]^2$
From Eq 2: Rate = $k[H_2][N_2O_2]$
 $= k[H_2]K_{eq}[NO]^2 = k_1[H_2][NO]^2$ so rate equation is satisfied

2008-J-7

- constitutional isomers conformational isomers diastereoisomers same compound diastereoisomers
 - (*E*)-2-butene
 - (R)-2-bromopropianal or (R)-2-bromopropionaldehyde

No. It's a meso isomer and has a plane of symmetry.

2008-J-8

$$CH_{3}CH_{2}CH_{$$

CH₃COOH

2008-J-9

• **A**: hot concentrated H₂SO₄

B: dilute H₂SO₄

 \mathbf{C} : $Cr_2O_7^{2-} / H^+$

D: hot concentrated HCl or SOCl₂

E: hot concentrated KOH in ethanol solvent

• C₈H₉O₂N

amine (primary) ester O Cl Θ H_3N

•

•

2008-J-13

•

HBr is the electrophile