CHEMISTRY 1B (CHEM1102) - June 2009

2009-J-2

• Oxidising agents undergo reduction (*i.e.* a gain of electrons). The electronic configuration of the halogens (Group 17) is ns^5 . They are small atoms (atomic size decreases across a period as shielding decreases) and will readily gain a single electron to form the X⁻ ion with a complete octet. As the atoms are small, the electrons are firmly held and have high ionisation energies. Hence halogens are poor reducing agents.

Paramagnetism arises as a result of the presence of 1 or more unpaired electrons. Co^{2+} has 3 unpaired electrons and so is paramagnetic.

2009-J-3

• A Lewis acid is an electron pair acceptor. BF₃ possess an empty *p*-orbital on B. CH₃CH₂OCH₂CH₃ possess a lone pair on O.

• A catalyst is a substance that increases the rate of a reaction without being consumed in the reaction. A catalyst works by providing an alternative reaction pathway of lower activation energy, E_{a} .

- The critical temperature (T_c) is the temperature above which a substance cannot exist as a liquid. Thus methane cannot be liquefied at 25 °C.
- Allotropes are different structural forms of the same element.
 - O_2 and O_3 , white phosphorus and red phosphorus, many other examples

2009-J-4

•

II	III	II
4	6	6
7	5	10
2-	3–	0
tetrahedral	octahedral	octahedral
Cl	Br and C	N and O

2009-J-5

•

3.28 8.59 4.87 KC₃H₅O₂

2009-J-6

• Rate = $k[S_2O_8^{2-}][I^-]$ $k = 0.081 \text{ M}^{-1} \text{ s}^{-1}$

2009-J-7

- constitutional isomers
 diastereoisomers
 enantiomers
 conformational isomers
 diastereoisomers
 (E)-2-pentene
 (R)
 - No. It has no plane of symmetry.

•

2009-J-9

•

2009-J-10

•

(S)-enantiomer

(*R*)-enantiomer

1,3-dichloropropane

2009-J-11

constitutional isomers constitutional isomers constitutional isomers racemate

2009-J-12

•

2009-J-13

•

