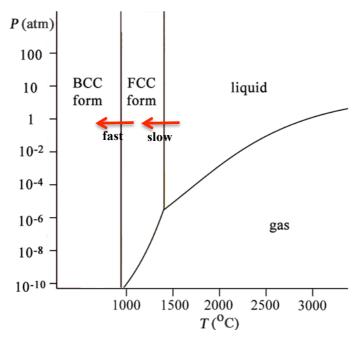
CHEMISTRY 1B (CHEM1102) - November 2014

NB These answers have not been checked

2014-N-2


• BN +III (or +3)

The B-N bonds are partially ionic.

2014-N-3

• BCC form

See below

Fast cooling to room temperature does not allow the atoms to re-arrange; they are stuck in the FCC form as considerable re-arrangement is needed to turn this in the BCC form.

The line between BCC and FCC has a negative slope (\). If the system is on the line and the pressure is increased, the system moves into the FCC region.

2014-N-4

• 2.75

C₆H₅COOH

10.97

 NH_3

2014-N-5

•
$$C_6H_5COOH(aq) + NH_3(aq) \rightarrow C_6H_5COO^-(aq) + NH_4^+(aq)$$

$$K = \frac{[C_6H_5COO^-(aq)][NH_4^+(aq)]}{[C_6H_5COOH(aq)][NH_3(aq)]}$$
 1.1×10^5

 $C_6H_5CO_2^-(aq), NH_4^+(aq), H_2O(l)$

2014-N-6

•
$$CaC_2O_4\cdot H_2O(s) \Rightarrow Ca^{2+}(aq) + C_2O_4^{2-}(aq) + H_2O(l)$$
 $K_{sp} = [Ca^{2+}(aq)][C_2O_4^{2-}(aq)]$
 $4.8 \times 10^{-5} \text{ mol L}^{-1}$
No effect
 $3.0 \times 10^{-8} \text{ M}$

2014-N-7

• The high charge on the Zn²⁺ ion draws electron density out of the O–H bonds in the water molecule. This weakens the O–H so the H⁺ is more likely to leave.

 Zn^{2+} has 0 unpaired d electrons, Co^{2+} has 3 unpaired d electrons:

$$Zn^{2+}$$
, $3d^{10}$
 Co^{2+} , $3d^7$

\uparrow \downarrow	\uparrow \downarrow	^↓	^↓	\uparrow \downarrow
\uparrow \downarrow	\uparrow \downarrow	↑	↑	↑

Co²⁺ is paramagnetic and the magnetism can be used to study the active site.

Co²⁺ may be oxidised to Co³⁺. Co²⁺ tends to be octahedrally coordinated so the coordination geometry may change.

2014-N-8

• See below

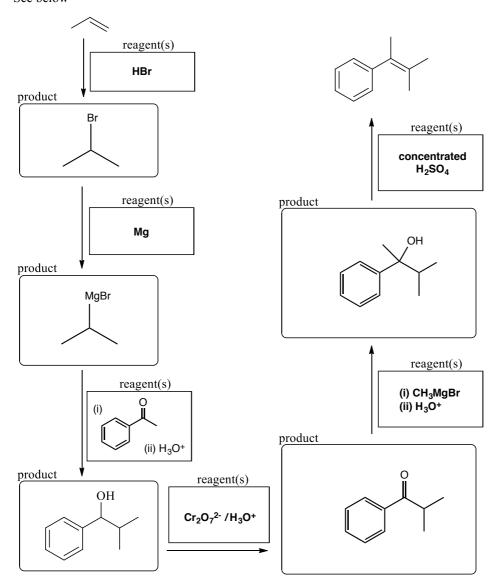
	1. NaBH ₄ 2. H [⊕] / H ₂ O	
ОН	hot concentrated H ₂ SO ₄	
		Br

2014-N-8 (cont.)

	dilute aqueous H ₂ SO ₄	ОН
	$\operatorname{Cr_2O_7}^{2\Theta}/\operatorname{H}^{\oplus}$	0
	2 equivalents of Cl ₂	Cl Cl
ОН	SOCl ₂	

2014-N-9

• See below


(*Z*)-3-methylpent-2-ene

2014-N-11

C is the less substituted alkene and, according to Zeirsev's rule, this is favoured because it is more stable.

2014-N-12

See below

