22/07(a)

The University of Sydney

CHEMISTRY 1B - CHEM1102

FIRST SEMESTER EXAMINATION

CONFIDENTIAL

JUNE 2003

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY	SID	
NAME	NUMBER	
OTHER	TABLE	
NAMES	NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 15 pages of examinable material.
- Complete the written section of the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a •.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question and a Periodic Table may be found on a separate data sheet.
- Pages 5, 15, 17 & 20 are for rough working only.

OFFICIAL USE ONLY

Multiple choice section

\backslash		Marks
Pages	Max	Gained
211	50	

Short answer section

		Marks					
Page	Max	Gained		Marker			
12	7						
13	7						
14	8						
16	12						
18	8						
19	8						
Total	50						
Check	Total						

CHEM1102	2003-J-2	June 2003	22/07(a)					
• Write balanced net ionic equations for each of the following reactions. If there is no reaction then write "no reaction".								
A solution of Ba(NO ₃) ₂ is add	ded to a solution of Na_2SO_4 .							
A solution of NaCl is added t	o a solution of AgNO ₃ .		_					
A solution of Pb(NO ₃) ₂ is add	led to an acidified solution of KI.							
A 2 M solution of NH_3 is add	led to a 0.1 M solution of Cu(NO ₃) ₂ .	-					
H ₂ S(g) is bubbled through a s	solution of ZnSO ₄ in the presence	of 4 M HCl.	_					
 Write the fully balanced equation for the redox reaction that occurs when chlorine gas is bubbled through a solution of iron(II) sulfate. The unbalanced equation is given. 								
Use the half-equation methed and the final balanced equ	hod: write both the oxidation and ation.	reduction half equations						
Oxidation half equation			_					
Reduction half equation			_					
Overall reaction								

June 2003

• Titanium(IV) chloride dissolves in concentrated hydrochloric acid to give the complex ion [TiCl ₆] ²⁻ .							
What is the oxidation number of the titanium in $[TiCl_6]^{2-}$?							
What is the coordination number of the titanium in $[TiCl_6]^{2-}$?							
What is the shape of the $[TiCl_6]^{2-}$ ion?							
Write the electron configuration for the titanium ion present in the $[TiCl_6]^{2-}$ ion.							
Write the name of the $[TiCl_6]^{2-}$ ion.							
• Magnesium metal can be produced by electrolysis of molten magnesium chloride. What mass (in gram) of magnesium would be produced by the passage of a current of 8.3 A for 1.8 hours?	3						
ANSWER:							

CHEM1102	2003-J-4	June 2003	22/07(a)		
• The solubility product con- BaSO ₄ in g L^{-1} ?	stant of BaSO ₄ is $1.1 \times 10^{-10} \text{ M}^2$.	What is the solubility of	Marks 3		
	ANSWER:		_		
• The solubility product consolubility of Ag ₂ CrO ₄ in w	stant of Ag ₂ CrO ₄ is 2.6×10^{-12} M ³ vater?	³ . What is the molar	5		
			_		
	ANSWER:		_		
What is the molar solubilit	ty of Ag_2CrO_4 in a solution of 0.10) M AgNO ₃ ?	_		
	ANSWER:				

Marks • Give the constitutional formulas and the name(s), where required, of the major 12 organic product(s) of each of the following reactions. conc HNO₃ conc H₂SO₄ Name: excess (CH₃)₂NH ► CH₃ 1. NaBH₄ CH₃CH₂^{ll}CH₃ 2. H^{\oplus}/H_2O Name: CH₃I (CH₃)₃N Name: CH₃ HCl CH₂ CH_3^{\prime} Name: $-OH \qquad Cr_2O_7^{2\Theta}/H^{\oplus}$ Name:

3

June 2003

Marks • Give the conditions and reagents **B**, **C** and **D**, involved in the following conversion.

22/07(b)

The University of Sydney

CHEM1102 - CHEMISTRY 1B

FIRST SEMESTEREXAMINATION

JUNE 2003

Numerical Data

Physical constants

Planck constant = $h = 6.626 \times 10^{-34}$ J s Speed of light in vacuum = $c_0 = 2.998 \times 10^8$ m s⁻¹ Avogadro constant = $N_A = 6.022 \times 10^{23}$ mol⁻¹ Faraday constant = F = 96485 C mol⁻¹ Ideal gas constant = R = 8.314 J K⁻¹ mol⁻¹ = 0.08206 L atm K⁻¹ mol⁻¹ Volume of 1 mol of ideal gas at 1 atm, 0 °C = 22.4 L Volume of 1 mol of ideal gas at 1 atm, 25 °C = 24.5 L

Conversion factors

0 °C = 273 K 1 atm = 101.3 kPa = 760.0 mmHg 1 nm = 10^{-9} m 1 MHz = 10^{6} Hz = 10^{6} s⁻¹ 1 L = 10^{-3} m³

> A periodic table is printed on the other side of this data sheet. Atomic weights are included in the periodic table.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	1																	2
1	HYDROGEN																	HELIUM
	1.008																	4.003
	3	4											5	6	7	8	9	10
		BERYLLIUM											BORON	CARBON	NITROGEN	OXYGEN	FLUORINE	NEON
	Li	Be											B	C	N	0	F	Ne
	6.941	9.012											10.8	12.01	14.01	16.00	19.00	20.18
	1 1 SODIUM	1 Z magnesium											13 ALUMINIU	M SILICON	15 PHOSPHORUS	10 SULFUR	L / CHLORINE	18 Argon
	Na	Mg											Al	Si	Р	S	Cl	Ar
	22.99	24.31										1	26.98	28.09	30.97	32.07	35.45	39.95
	19	20	21	22	2 23	24	25	26	27	28	29	30	31	32	33	34	35	36
1	K		SCANDIUM	TITANI	VANADIUM	CHROMIUM	MANGANESE	Бе	COBALT	NICKEL		ZINC	GALLIUM	GERMANIU	ARSENIC	Se	BROMINE	KRYPTON Kr
	39.10	40.08	44.96	47.8	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.59	74.92	78.96	79.90	83.80
	37	38	39	40) 41	42	43	44	45	46	47	48	49	50	51	52	53	54
		STRONTIUM	YTTRIUM	ZIRCON	IUM NIOBIUM	MOLYBDENUM	TECHNETIUM	RUTHENIUM	RHODIUM	PALLADIUM	SILVER				ANTIMONY	TELLURIUM	IODINE	XENON
	KD 85.47	Sr 87.62	Y			IVIO 05.04	IC	KU	KN	Pa	Ag	UU	114.8	5n	SD	127.60	I 126.00	Ae
	55	56	57 71	91.2	72 92.91	93.94	[96.91] 75	76	102.91	78	70	90	9 114.0 Q1	2 118.05	<u> </u>	<u><u>127.00</u></u>	120.90 95	86
	CAESIUM	BARIUM	57-71	I Z HAFNI	JM TANTALUM	7 4 TUNGSTEN	7 J RHENIUM	7 U OSMIUM	IRIDIUM	7 O PLATINUM	GOLD	MERCURY	O I THALLIU	A LEAD	BISMUTH	O4 POLONIUM	ASTATINE	RADON
	Cs	Ba		H	f Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
	132.91	137.34		178.	49 180.95	183.85	186.2	190.2	192.22	195.09	196.97	200.59	204.3	7 207.2	208.98	[210.0]	[210.0]	[222.0]
	87 FRANCIUM	88 RADIUM	89-103	104 RUTHEREO	4 105	106 SEABORGIUM	107 BOHRIUM	108 HASSIUM	109 meitnerium									
	Fr	Ra		R	f Db	Sg	Bh	Hs	Mt									
[223.0]	[226.0]		[26]	[262]	[266]	[262]	[265]	[266]									
		_																
		57	7 5	58	59	60	61	62	63	64	65	5	66	67	68	69	70	71
LAI	NTHANIDE	ES LANTHA	NUM CE		PRASEODYMIUM Dm	NEODYMIUM	PROMETHIUM Dm	SAMARIUM	EUROPIUM		M TERBI	um Di		HOLMIUM		THULIUM	YTTERBIUM	LUTETIUM
		138	1 (91 14) 12	F F 140 91	1 NU 144 24	F III [144 9]	5111 150 4	Eu 151.96	157.25	5 158	0 93 1	Dy 62.50	HU 164 93	EF 167.26	1 111 168 93	173 04	174 97
			$) \qquad ($	0	91	92	93	94	95	96	97	7	98	99	100	101	102	103
А	CTINIDES	ACTINI	UM THO	RIUM	PROTACTINIUM	URANIUM	NEPTUNIUM	PLUTONIUM	AMERICIUM	CURIUM	BERKEL	LIUM CA	LIFORNIUM	EINSTEINIUM	FERMIUM	MENDELEVIUM	NOBELIUM	LAWRENCIUM
		A	с Т	`h	Pa	U	Np	Pu	Am	Cm	B	K	Cf	Es	Fm	Md	No	Lr
		[227	.0] 232	2.04	[231.0]	238.03	[237.0]	[239.1]	[243.1]	[247.1] [247	[.1] [.	252.1]	[252.1]	[257.1]	[256.1]	[259.1]	[260.1]

PERIODIC TABLE OF THE ELEMENTS

June2003

CHEM1102 - CHEMISTRY 1B

22/07(b)