Topics in the June 2014 Exam Paper for CHEM1102

Click on the links for resources on each topic.

2014-J-2:

- Crystal Structures
- Coordination Chemistry
- Kinetics
- Kinetics Influences
- Kinetics Catalysis

2014-J-3:

• Weak Acids and Bases

2014-J-4:

- Weak Acids and Bases
- Calculations Involving pKa

2014-J-5:

• Coordination Chemistry

2014-J-6:

Solubility Equilibrium

2014-J-7:

- Physical States and Phase Diagrams
- Intermolecular Forces and Phase Behaviour

2014-J-8:

- Alkenes
- Alcohols
- Organic Halogen Compounds
- Aldehydes and Ketones
- Carboxylic Acids and Derivatives

2014-J-9:

- Stereochemistry
- Carboxylic Acids and Derivatives

2014-J-10:

- Stereochemistry
- Alkenes
- Alcohols

2014-J-11:

- Alcohols
- Organic Halogen Compounds

2014-J-12:

• Carboxylic Acids and Derivatives

- Alcohols
- Aldehydes and KetonesSynthetic Strategies

2206(a)

THE UNIVERSITY OF SYDNEY <u>CHEMISTRY 1B - CHEM1102</u> <u>FIRST SEMESTER EXAMINATION</u>

CONFIDENTIAL

JUNE 2014

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY NAME	SID NUMBER	
OTHER NAMES	TABLE NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 18 pages of examinable material.
- Complete the written section of the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a •.
- Only non-programmable, Universityapproved calculators may be used.
- Students are warned that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Page 20 is for rough working only.

OFFICIAL USE ONLY

Multiple choice section

Short answer section

	Marks			
Page	Max	Gained		Marker
9	6			
10	5			
11	7			
12	4			
13	8			
14	6			
15	11			
16	7			
17	8			
18	4			
19	6			
Total	72			
Check Total				

 The structures of the drugs aspirin and benzocaine are shown below. (a) Draw the conjugate base of aspirin and the conjugate acid of benzocaine. (b) <i>Circle</i> the form of each that will be present in a highly acidic environment. 				
O O O H aspirin	conjugate base of aspirin			
H ₂ N O				
benzocaine	conjugate acid of benzocaine			
Ions are less likely to cross cell membranes than uncharged molecules. One of the drugs above is absorbed in the acid environment of the stomach and the other is absorbed in the basic environment of the intestine. Identify which is absorbed in each environment below and <i>briefly</i> explain your answers.				
Drug absorbed in the stomach:	Drug absorbed in the stomach: aspirin / benzocaine			
Drug absorbed in the intestine:	aspirin / benzocaine			
Aspirin, C ₉ H ₈ O ₄ is not very soluble in water. "Soluble aspirin", the sodium salt NaC ₉ H ₇ O ₄ , is often administered instead. Is a solution of "soluble aspirin" acidic or				
basic? Brieffy explain your answe	21.	-		

THIS QUESTION CONTINUES ON THE NEXT PAGE.

Page Total:

Calculate the pH of a 0.010 M solution of is 3.5 at this temperature.	f aspirin at 25 °C. The pK_a of aspirin	Marks 7
	pH =	
Ammonia, NH ₃ , is a weak base in water. between aspirin and ammonia.	Write the equation for the acid/base reaction	
What is the expression for the equilibrium	n constant, <i>K</i> , for this reaction?	
Rewrite this expression in terms of the K_a multiply by $[H^+]/[H^+] = 1$) Hence calcula	a of aspirin and the K_a of NH ₄ ⁺ . (Hint: ate the value of K. The pK _a of NH ₄ ⁺ is 9.2.	-
	Answer:	
Would aspirin dissolve in a solution of ar	nmonia? Explain your answer.	

• Name the complex $[CoCl_2(en)_2]$. en = ethylenediamine = $NH_2CH_2CH_2NH_2$	
Draw all possible isomers of this complex.	

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

•	• A solution is prepared that contains sodium chloride and sodium chromate (both 0.10 M). When a concentrated solution of silver nitrate is added slowly, white AgCl(s) begins to precipitate. After most of the Cl ⁻ (aq) has been consumed, red Ag ₂ CrO ₄ (s) starts to precipitate.		
	Ignoring dilution, what is the concentration of silver ions when silver chloride solid first starts to precipitate? K_{sp} (AgCl) is 1.8×10^{-10} .		
		[
		Answer:	
	Ignoring dilution, what is the concentration first starts to precipitate? K_{sp} (Ag ₂ CrO ₄)	on of silver ions when silver chromate solid is 3.6×10^{-12} .	
		Answer:	
<u> </u>	What is the concentration of chloride ions precipitate?	s when silver chromate solid first starts to	
		A	
		Answer:	
	What percentage of the chloride ion is preprecipitated?	ecipitated before any silver chromate is	
		Answer:	
L			1

Marks • Solid sulfur can exist in two forms, rhombic sulfur and monoclinic sulfur. A portion 6 of the phase diagram for sulfur is reproduced schematically below. The pressure and temperature axes are not drawn to scale. Complete the diagram by adding the labels "vapour" and "liquid" to the appropriate regions. monoclinic 153 °C, 1420 atm sulfur 1041 °C, 204 atm Pressure (atm) rhombic sulfur 115.18 °C, 3.2×10^{-5} atm 95.31 °C, 5.1×10^{-6} atm Temperature (°C) Which form of solid sulfur is stable at 25 °C and 1 atm? Describe what happens when sulfur at 25 °C is slowly heated to 200 °C at a constant pressure of 1 atm. How many triple points are there in the phase diagram? What phases are in equilibrium at the triple points? Which solid form of sulfur is more dense? Explain your reasoning.

• Complete the following table. Make sure you give the name of the starting material where indicated.			
STARTING MATERIAL	REAGENTS/ CONDITIONS	STRUCTURAL FORMULA(S) OF MAJOR ORGANIC PRODUCT(S)	
	HBr / CCl4 (solvent)		
Name:			
ОН	NaOH		
CH ₂ Br	KCN / ethanol (solvent)		
O H		ОН	
Name:			
Cl	(CH ₃) ₂ NH		
	hot 3 M NaOH		
Br			

Marks • Methylphenidate, also known as Ritalin, is a psychostimulant drug approved for the 7 treatment of attention-deficit disorder. Identify all stereogenic (chiral) centres in methylphenidate by clearly marking each with an asterisk (*) on the structure below. methylphenidate CO₂CH₃ ŃΗ Using one stereogenic centre you have identified, draw the (R)-configuration of that centre. Ή How many stereoisomers are there of methylphenidate? Describe the relationships between these isomers. Give the products formed when methylphenidate is hydrolysed with 4 M HCl.

The structure of (–)-linalool, a co	ommonly occurring natural product, is shown below.
	OH OH
/	
What is the molecular formula o	f (–)-linalool?
Which of the following best des	cribes (–)-linalool?
(R)-enantiomer, or (S) -enant	tiomer
What functional groups are prese	ent in (-)-linalool?
Is it possible to obtain (Z) and (Z)	E) isomers of (–)-linalool? Give a reason for your
Give the structural formula of th the following reactions. NB: If the following reactions.	e organic product formed from (–)-linalool in each of there is no reaction, write "no reaction".
Give the structural formula of th the following reactions. NB: If t Reagents / Conditions	e organic product formed from (–)-linalool in each of here is no reaction, write "no reaction". Structural Formula of Product
Give the structural formula of th the following reactions. NB: If t Reagents / Conditions	e organic product formed from (–)-linalool in each of there is no reaction, write "no reaction". Structural Formula of Product
Give the structural formula of th the following reactions. NB: If t Reagents / Conditions Br ₂ (in CCl ₄ as solvent)	e organic product formed from (–)-linalool in each of there is no reaction, write "no reaction". Structural Formula of Product
Give the structural formula of th the following reactions. NB: If t Reagents / Conditions Br ₂ (in CCl ₄ as solvent)	e organic product formed from (–)-linalool in each of here is no reaction, write "no reaction". Structural Formula of Product
Give the structural formula of th the following reactions. NB: If t Reagents / Conditions Br ₂ (in CCl ₄ as solvent)	e organic product formed from (–)-linalool in each of here is no reaction, write "no reaction". Structural Formula of Product
Give the structural formula of th the following reactions. NB: If t Reagents / Conditions Br ₂ (in CCl ₄ as solvent) Na ₂ Cr ₂ O ₇ in aqueous acid	e organic product formed from (–)-linalool in each of there is no reaction, write "no reaction". Structural Formula of Product
Give the structural formula of th the following reactions. NB: If t Reagents / Conditions Br ₂ (in CCl ₄ as solvent) Na ₂ Cr ₂ O ₇ in aqueous acid	e organic product formed from (–)-linalool in each of there is no reaction, write "no reaction". Structural Formula of Product
Give the structural formula of th the following reactions. NB: If the Reagents / Conditions Br_2 (in CCl ₄ as solvent) $Na_2Cr_2O_7$ in aqueous acid	e organic product formed from (–)-linalool in each of here is no reaction, write "no reaction". Structural Formula of Product
Give the structural formula of th the following reactions. NB: If t Reagents / Conditions Br ₂ (in CCl ₄ as solvent) Na ₂ Cr ₂ O ₇ in aqueous acid Na, then CH ₃ Br	e organic product formed from (–)-linalool in each of there is no reaction, write "no reaction". Structural Formula of Product
Give the structural formula of th the following reactions. NB: If t Reagents / Conditions Br ₂ (in CCl ₄ as solvent) Na ₂ Cr ₂ O ₇ in aqueous acid Na, then CH ₃ Br	e organic product formed from (–)-linalool in each of here is no reaction, write "no reaction". Structural Formula of Product
Give the structural formula of th the following reactions. NB: If the Reagents / Conditions Br ₂ (in CCl ₄ as solvent) Na ₂ Cr ₂ O ₇ in aqueous acid Na, then CH ₃ Br	e organic product formed from (–)-linalool in each of here is no reaction, write "no reaction". Structural Formula of Product
Give the structural formula of th the following reactions. NB: If the Reagents / Conditions Br2 (in CCl4 as solvent) Na2Cr2O7 in aqueous acid Na, then CH3Br H2 / Pd-C catalyst	e organic product formed from (–)-linalool in each of here is no reaction, write "no reaction". Structural Formula of Product

Marks • Concentrated HCl reacts with 2-methyl-2-propanol in an S_N1 reaction to give 4 2-chloro-2-methylpropane as shown below. Complete the reaction mechanism by adding curly arrows and formal charges on the intermediates as appropriate. -Cl О-Н θ Cl^{Θ} -H 0 + H₂O Ĥ Explain what each part of the abbreviation $S_N 1$ means. S =N =

1 =

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

Marks • Show clearly the reagents you would use to carry out the following chemical conversions. More than one step is required in each case. Give the structure of any 6 intermediate compounds formed. 0 Ο 0

CHEM1102 – CHEMISTRY 1B

DATA SHEET

 $Physical \ constants$ Avogadro constant, $N_{\rm A} = 6.022 \times 10^{23} \ {\rm mol}^{-1}$ Faraday constant, $F = 96485 \ {\rm C} \ {\rm mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \ {\rm J} \ {\rm s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \ {\rm m \ s}^{-1}$ Rydberg constant, $E_{\rm R} = 2.18 \times 10^{-18} \ {\rm J}$ Boltzmann constant, $k_{\rm B} = 1.381 \times 10^{-23} \ {\rm J \ K}^{-1}$ Permittivity of a vacuum, $\epsilon_0 = 8.854 \times 10^{-12} \ {\rm C}^2 \ {\rm J}^{-1} \ {\rm m}^{-1}$ Gas constant, $R = 8.314 \ {\rm J \ K}^{-1} \ {\rm mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \ {\rm C}$ Mass of electron, $m_{\rm e} = 9.1094 \times 10^{-31} \ {\rm kg}$ Mass of proton, $m_{\rm p} = 1.6726 \times 10^{-27} \ {\rm kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors	
1 atm = 760 mmHg = 101.3 kPa	$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$
0 °C = 273 K	$1 \text{ Hz} = 1 \text{ s}^{-1}$
$1 L = 10^{-3} m^3$	1 tonne = 10^3 kg
$1 \text{ Å} = 10^{-10} \text{ m}$	$1 \text{ W} = 1 \text{ J s}^{-1}$
$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$	$1 \text{ J} = 1 \text{ kg m}^2 \text{ s}^{-2}$

Decimal fractions		Deci	Decimal multiples		
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol
10^{-3}	milli	m	10^{3}	kilo	k
10^{-6}	micro	μ	10^{6}	mega	М
10^{-9}	nano	n	10 ⁹	giga	G
10^{-12}	pico	р	10^{12}	tera	Т

CHEM1102 – CHEMISTRY 1B

Standard Reduction Potentials, E°	
Reaction	E° / V
$\operatorname{Co}^{3+}(\operatorname{aq}) + \operatorname{e}^{-} \rightarrow \operatorname{Co}^{2+}(\operatorname{aq})$	+1.82
$Ce^{4+}(aq) + e^{-} \rightarrow Ce^{3+}(aq)$	+1.72
$MnO_4^{-}(aq) + 8H^+(aq) + 5e^- \rightarrow Mn^{2+}(aq) + 4H_2O$	+1.51
$\operatorname{Au}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Au}(s)$	+1.50
$Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^- \rightarrow 2Cr^{3+}(g) + 7H_2O$	+1.36
$Cl_2(g) + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2(g) + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Pt^{2+}(aq) + 2e^{-} \rightarrow Pt(s)$	+1.18
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96
$NO_3(aq) + 4H^+(aq) + 3e^- \rightarrow NO(g) + 2H_2O$	+0.96
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80
$Fe^{3+}(aq) + e^{-} \rightarrow Fe^{2+}(aq)$	+0.77
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53
$\operatorname{Cu}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cu}(s)$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2\mathrm{H}^{+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{g})$	0 (by definition)
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$	-0.04
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2^+}(\operatorname{aq}) + 2e^- \rightarrow \operatorname{Sn}(s)$	-0.14
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.24
$Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$	-0.40
$Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$	-0.44
$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Cr}(s)$	-0.74
$Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$	-0.76
$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83
$\operatorname{Cr}^{2^+}(\operatorname{aq}) + 2e^- \rightarrow \operatorname{Cr}(s)$	-0.89
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.68
$\mathrm{Sc}^{3+}(\mathrm{aq}) + 3\mathrm{e}^{-} \rightarrow \mathrm{Sc}(\mathrm{s})$	-2.09
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2.36
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71
$Ca^{2+}(aq) + 2e^{-} \rightarrow Ca(s)$	-2.87
$\text{Li}^+(\text{aq}) + e^- \rightarrow \text{Li}(s)$	-3.04

CHEM1102 – CHEMISTRY 1B

Useful formulas			
Quantum Chemistry	Electrochemistry		
$E = h\nu = hc/\lambda$	$\Delta G^{\circ} = -nFE^{\circ}$		
$\lambda = h/mv$	Moles of $e^- = It/F$		
$E = -Z^2 E_{\rm R}(1/n^2)$	$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$		
$\Delta x \cdot \Delta(mv) \ge h/4\pi$	$= E^{\circ} - (RT/nF) \times \ln Q$		
$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	$E^{\circ} = (RT/nF) \times 2.303 \log K$		
$T \lambda = 2.898 \times 10^6 \text{ K nm}$	$= (RT/nF) \times \ln K$		
	$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$		
Acids and Bases	Gas Laws		
$pK_{\rm w} = pH + pOH = 14.00$	PV = nRT		
$pK_w = pK_a + pK_b = 14.00$	$(P+n^2a/V^2)(V-nb) = nRT$		
$pH = pK_a + \log\{[A^-] / [HA]\}$	$E_{\rm k} = \frac{1}{2}mv^2$		
Radioactivity	Kinetics		
$t_{\gamma_2} = \ln 2/\lambda$	$t_{\frac{1}{2}} = \ln 2/k$		
$A = \lambda N$	$k = A e^{-Ea/RT}$		
$\ln(N_0/N_t) = \lambda t$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_0 - kt$		
14 C age = 8033 ln(A_0/A_t) years	$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$		
Mathematics	Thermodynamics & Equilibrium		
If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$ $\Delta G = \Delta G^{\circ} + RT \ln O$		
$\ln x = 2.303 \log x$	$\Delta G^{\circ} = -RT \ln K$		
Area of circle = πr^2	$\Delta_{\rm univ}S^\circ = R \ln K$		
Surface area of sphere = $4\pi r^2$	$K_2 - \Delta H^\circ (1 - 1)$		
Volume of sphere = $\frac{4}{3} \pi r^3$	$\ln \frac{1}{K_1} = \frac{1}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$		
Miscellaneous	Colligative Properties & Solutions		
$A = -\log \frac{I}{I}$	$\Pi = cRT$		
	$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$		
$A = \varepsilon c l$	c = kp		
$E = -4 \frac{e^2}{N_A}$	$\Delta T_{\rm f} = K_{\rm f} m$		
$4\pi\varepsilon_0 r$	$\Delta T_{\rm b} = K_{\rm b} m$		

ACTINOIDS	LANTHANOID	87 Francium Fr [223.0]	55 слезним Сз 132.91	37 киланыним Rb 85.47	19 м К 39.10	3 Ці 6.941 11 sobusy Na 22.99	1 нурвосек Н 1.008
89 Астичим Ас [227.0]	57 LANTIHANUM Lan 138.91	88 89 Ra 226.0]	56 57 валим Ва 137.34	38 Sr Sr 87.62 8	сльсним Са 40.08 4	4 Ве 9.012 12 истрания 12 24.31	2
90 тноким Th 232.04	58 Се 140.12	-103 10 RUTHERE R [26	7-71 7. HAPS	39 4 TRIUM ZIRCO Y ZRCO 8.91 91.	21 2. Алоним птал Sc T 4.96 47.		3
91 protactinium Pa [231.0]	59 PRASEODYMIUN Pr 140.91	14 околим ривмил f Db 3] [268]	2 73 IIM TANTALU [f Ta [49 180.9	0 41 мим мовим r Nb 22 92.91	2 23 i vanadu 88 50.92	-	- بر
92 икалиим U 238.03	1 60 Neodymium N d 144.24	1 106 SEANORGIUM Sg [271]	74 TUNGSTEN W 5 183.85	42 могляремим Мо 95.94	а снюмии Спомии 1 52.00		6
93 Neptunium Np [237.0]	61 рекометиним Рт [144.9]	107 волятим Вh [274]	75 Re 186.2	43 тесиметим Тс [98.91]	25 Manganese Mn 54.94		٦
94 рілтомим Ри [239.1]	62 samarium Sm 150.4	108 назвим Hs [270]	76 Оз 190.2	44 RUTHENNUM Ru 101.07	26 ^{IRON} 55.85	-	œ
95 лменстим Ат [243.1]	63 ^{викорим} Е и 151.96	109 меттиеним рл Мt [278]	77 IRIDIUM I C 192.22	45 Rh 102.91	27 Совалт 58.93	-	9
96 сиким Ст [247.1]	64 сароллим Gd 157.25	110 раз Ds [281]	78 PL ATINUM Pt 195.09 1	46 Р д 106.4 1	28 Nickel Ni 58.69		10
97 веркешлил ВК [247.1]	65 теквим Тb 158.93	111 Rg [281] [79 Au 96.97	47 Ag 07.87 1	29 Cu 63.55 6	-	1
98 4 CALIFORN Cf [252.]	66 ^{рузркозі} Ду 162.5	112 Ernicium Cn 285]	80 Нg 10.59 20	48 Cd 12.40	30 znc c Zn c 5.39 6	2 1 -	12
им еня с]			81 TI 04.37	49 In 14.82	31 Ga 9.72	5 B B B B B 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81	13
99 ^{theinnum} Es 52.1]	67 Но 4.93	114 flerovium F1 [289]	82 Pb 207.2	50 ^{TIN} Sn 118.69	32 Germanium Ge 72.59	6 Саквол С 12.01 12.01 12.01 12.01 12.01 12.01 28.09	14
100 ^{Fermium} Fm [257.1]	68 еквиля Ег 167.26		83 візмітн 208.98	51 литимому Sb 121.75	33 Arsenic AS 74.92	7 NITROGEN N 14.01 15 PHOSPHORUS PHOSPHORUS 9 30.97	15
101 MENDELEVIUM Md [256.1]	69 тнилим Тт	116 Livermorium Lv [293]	84 POLONIUM PO	52 Tellurium Te 127.60	34 selenium Se 78.96	8 0 16.00 16 SULFUR S 32.07	16
102 ^{NOBELIUM} No [259.1]	70 ^{уттеквиим} УЪ 173.04		85 Astatine At [210.0]	53 IODINE I 126.90	35 вкоміле Вг 79.90	9 FLIORINE F 19.00 17 СП СП 35.45	17
103 LAWRENCIUM Lr [260,1]	71 Lutetium Lu 174.97		86 Rn [222.0]	54 ^{XENON} Xe 131.30	36 KRYPTON Kr 83.80	10 Ne 20.18 18 Arcon Arcon 39.95	18 2 Не 4.003

PERIODIC TABLE OF THE ELEMENTS

June 2014

CHEW1105 -CHEWIZLBA IB

(q)9077