Click on the links for resources on each topic.

2014-J-2:

- Crystal Structures
- Coordination Chemistry
- Kinetics
- Kinetics - Influences
- Kinetics - Catalysis

2014-J-3:

- Weak Acids and Bases

2014-J-4:

- Weak Acids and Bases
- Calculations Involving pKa

2014-J-5:

- Coordination Chemistry

2014-J-6:

- Solubility Equilibrium

2014-J-7:

- Physical States and Phase Diagrams
- Intermolecular Forces and Phase Behaviour

2014-J-8:

- Alkenes
- Alcohols
- Organic Halogen Compounds
- Aldehydes and Ketones
- Carboxylic Acids and Derivatives

2014-J-9:

- Stereochemistry
- Carboxylic Acids and Derivatives

2014-J-10:

- Stereochemistry
- Alkenes
- Alcohols

2014-J-11:

- Alcohols
- Organic Halogen Compounds

2014-J-12:

- Carboxylic Acids and Derivatives
- Alcohols
- Aldehydes and Ketones
- Synthetic Strategies

CONFIDENTIAL

JUNE 2014
TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY		SID	
NAME		NUMBER	
OTHER		TABLE	
NAMES		NUMBER	

OFFICIAL USE ONLY

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 18 pages of examinable material.
- Complete the written section of the examination paper in INK.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100 . The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a \cdot.
- Only non-programmable, Universityapproved calculators may be used.
- Students are warned that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Page 20 is for rough working only.

Short answer section

Page	Marks			Marker
	Max	Gained		
9	6			
10	5			
11	7			
12	4			
13	8			
14	6			
15	11			
16	7			
17	8			
18	4			
19	6			
Total	72			
Check Total				

- The diagram below shows the structure of an alloy of copper and gold with a gold atom at each of the corners and a copper atom in the centre of each of the faces.

$$
O=A u
$$

$$
\mathrm{O}=\mathrm{Cu}
$$

What is the chemical formula of the alloy?

Answer:

- Compounds of d-block elements are frequently paramagnetic. Using the box notation to represent atomic orbitals, account for this property in compounds of Co^{2+}.
\square
- Briefly explain how a catalyst works.
\square
- The structures of the drugs aspirin and benzocaine are shown below.
(a) Draw the conjugate base of aspirin and the conjugate acid of benzocaine.
(b) Circle the form of each that will be present in a highly acidic environment.
consugate base of aspirin

Ions are less likely to cross cell membranes than uncharged molecules. One of the drugs above is absorbed in the acid environment of the stomach and the other is absorbed in the basic environment of the intestine. Identify which is absorbed in each environment below and briefly explain your answers.
Drug absorbed in the stomach:
Drug absorbed in the intestine:

aspirin / benzocaine
aspirin / benzocaine

Aspirin, $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$ is not very soluble in water. "Soluble aspirin", the sodium salt $\mathrm{NaC}_{9} \mathrm{H}_{7} \mathrm{O}_{4}$, is often administered instead. Is a solution of "soluble aspirin" acidic or basic? Briefly explain your answer.

Calculate the pH of a 0.010 M solution of aspirin at $25^{\circ} \mathrm{C}$. The $\mathrm{p} K_{\mathrm{a}}$ of aspirin is 3.5 at this temperature.
\square
$\mathrm{pH}=$
Ammonia, NH_{3}, is a weak base in water. Write the equation for the acid/base reaction between aspirin and ammonia.
\qquad
What is the expression for the equilibrium constant, K, for this reaction?
\qquad
Rewrite this expression in terms of the K_{a} of aspirin and the K_{a} of $\mathrm{NH}_{4}{ }^{+}$. (Hint: multiply by $\left[\mathrm{H}^{+}\right] /\left[\mathrm{H}^{+}\right]=1$) Hence calculate the value of K. The $\mathrm{p} K_{\mathrm{a}}$ of $\mathrm{NH}_{4}{ }^{+}$is 9.2 .

- Name the complex $\left[\mathrm{CoCl}_{2}(\text { en })_{2}\right]$. en $=$ ethylenediamine $=\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$
\qquad
Draw all possible isomers of this complex.
\square
THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.
- A solution is prepared that contains sodium chloride and sodium chromate (both 0.10 M). When a concentrated solution of silver nitrate is added slowly, white $\mathrm{AgCl}(\mathrm{s})$ begins to precipitate. After most of the $\mathrm{Cl}^{-}(\mathrm{aq})$ has been consumed, red $\mathrm{Ag}_{2} \mathrm{CrO}_{4}(\mathrm{~s})$ starts to precipitate.
Ignoring dilution, what is the concentration of silver ions when silver chloride solid first starts to precipitate? $K_{\mathrm{sp}}(\mathrm{AgCl})$ is 1.8×10^{-10}.

Answer:

Ignoring dilution, what is the concentration of silver ions when silver chromate solid first starts to precipitate? $K_{\text {sp }}\left(\mathrm{Ag}_{2} \mathrm{CrO}_{4}\right)$ is 3.6×10^{-12}.

Answer:

What is the concentration of chloride ions when silver chromate solid first starts to precipitate?
\square

Answer:

What percentage of the chloride ion is precipitated before any silver chromate is precipitated?
\square

- Solid sulfur can exist in two forms, rhombic sulfur and monoclinic sulfur. A portion of the phase diagram for sulfur is reproduced schematically below. The pressure and temperature axes are not drawn to scale.

Complete the diagram by adding the labels "vapour" and "liquid" to the appropriate regions.

Which form of solid sulfur is stable at $25^{\circ} \mathrm{C}$ and 1 atm ?
\square

Describe what happens when sulfur at $25^{\circ} \mathrm{C}$ is slowly heated to $200^{\circ} \mathrm{C}$ at a constant pressure of 1 atm .

How many triple points are there in the phase diagram?
What phases are in equilibrium at the triple points?
\square
Which solid form of sulfur is more dense? Explain your reasoning.

- Complete the following table. Make sure you give the name of the starting material where indicated.

STARTING MATERIAL	REAGENTS/ CONDITIONS	STRUCTURAL FORMULA(S) OF MAJOR ORGANIC PRODUCT(S)
 Name:	$\mathrm{HBr} / \mathrm{CCl}_{4}$ (solvent)	
	NaOH	
	KCN / ethanol (solvent)	
 Name:		
	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$	
	hot 3 M NaOH	

- Methylphenidate, also known as Ritalin, is a psychostimulant drug approved for the treatment of attention-deficit disorder. Identify all stereogenic (chiral) centres in methylphenidate by clearly marking each with an asterisk (*) on the structure below.

Using one stereogenic centre you have identified, draw the (R)-configuration of that centre.

How many stereoisomers are there of methylphenidate? Describe the relationships between these isomers.
\square
Give the products formed when methylphenidate is hydrolysed with 4 M HCl .

- The structure of (-)-linalool, a commonly occurring natural product, is shown below.

What is the molecular formula of $(-)$-linalool?

Which of the following best describes (-)-linalool? achiral compound, racemic mixture, (R)-enantiomer, or (S)-enantiomer

What functional groups are present in $(-)$-linalool?

Is it possible to obtain (Z) and (E) isomers of $(-)$-linalool? Give a reason for your answer.
\square
Give the structural formula of the organic product formed from (-)-linalool in each of the following reactions. NB: If there is no reaction, write "no reaction".

Reagents / Conditions	Structural Formula of Product
Br_{2} (in CCl_{4} as solvent)	
$\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ in aqueous acid	
Na, then $\mathrm{CH}_{3} \mathrm{Br}$	
H / $\mathrm{Pd}-\mathrm{C}$ catalyst	

- Concentrated HCl reacts with 2-methyl-2-propanol in an $\mathrm{S}_{\mathrm{N}} 1$ reaction to give

2-chloro-2-methylpropane as shown below. Complete the reaction mechanism by adding curly arrows and formal charges on the intermediates as appropriate.

Explain what each part of the abbreviation $\mathrm{S}_{\mathrm{N}} 1$ means.

$\mathrm{S}=$
$\mathrm{N}=$
$1=$

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

- Show clearly the reagents you would use to carry out the following chemical conversions. More than one step is required in each case. Give the structure of any intermediate compounds formed.

CHEM1102 -CHEMISTRY 1B

DATA SHEET

Physical constants
Avogadro constant, $N_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
Faraday constant, $F=96485 \mathrm{C} \mathrm{mol}^{-1}$
Planck constant, $h=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Speed of light in vacuum, $c=2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Rydberg constant, $E_{\mathrm{R}}=2.18 \times 10^{-18} \mathrm{~J}$
Boltzmann constant, $k_{\mathrm{B}}=1.381 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
Permittivity of a vacuum, $\varepsilon_{0}=8.854 \times 10^{-12} \mathrm{C}^{2} \mathrm{~J}^{-1} \mathrm{~m}^{-1}$
Gas constant, $R=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

$$
=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
$$

Charge of electron, $e=1.602 \times 10^{-19} \mathrm{C}$
Mass of electron, $m_{\mathrm{e}}=9.1094 \times 10^{-31} \mathrm{~kg}$
Mass of proton, $m_{\mathrm{p}}=1.6726 \times 10^{-27} \mathrm{~kg}$
Mass of neutron, $m_{\mathrm{n}}=1.6749 \times 10^{-27} \mathrm{~kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and $25^{\circ} \mathrm{C}=24.5 \mathrm{~L}$
Volume of 1 mole of ideal gas at 1 atm and $0^{\circ} \mathrm{C}=22.4 \mathrm{~L}$
Density of water at $298 \mathrm{~K}=0.997 \mathrm{~g} \mathrm{~cm}^{-3}$

Conversion factors

$1 \mathrm{~atm}=760 \mathrm{mmHg}=101.3 \mathrm{kPa}$
$1 \mathrm{Ci}=3.70 \times 10^{10} \mathrm{~Bq}$
$0{ }^{\circ} \mathrm{C}=273 \mathrm{~K}$
$1 \mathrm{~Hz}=1 \mathrm{~s}^{-1}$
$1 \mathrm{~L}=10^{-3} \mathrm{~m}^{3}$
1 tonne $=10^{3} \mathrm{~kg}$
$1 \AA=10^{-10} \mathrm{~m}$
$1 \mathrm{~W}=1 \mathrm{~J} \mathrm{~s}^{-1}$
$1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}$
$1 \mathrm{~J}=1 \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-2}$

Decimal fractions

Fraction	Prefix	Symbol
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p

Decimal multiples

Multiple	Prefix	Symbol
10^{3}	kilo	k
10^{6}	mega	M
10^{9}	giga	G
10^{12}	tera	T

CHEM1102 -CHEMISTRY 1B

Standard Reduction Potentials, E ${ }^{\circ}$

Reaction	E° / V
$\mathrm{Co}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})$	$+1.82$
$\mathrm{Ce}^{4+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ce}^{3+}(\mathrm{aq})$	+1.72
$\mathrm{MnO}_{4}^{-}(\mathrm{aq})+8 \mathrm{H}^{+}(\mathrm{aq})+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}$	+1.51
$\mathrm{Au}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Au}(\mathrm{s})$	$+1.50$
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq})+14 \mathrm{H}^{+}(\mathrm{aq})+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{3+}(\mathrm{g})+7 \mathrm{H}_{2} \mathrm{O}$	+1.36
$\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-}(\mathrm{aq})$	+1.36
$\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$	+1.23
$\mathrm{Pt}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Pt}(\mathrm{s})$	+1.18
$\mathrm{MnO}_{2}(\mathrm{~s})+4 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Mn}^{3+}+2 \mathrm{H}_{2} \mathrm{O}$	+0.96
$\mathrm{NO}_{3}{ }^{-}(\mathrm{aq})+4 \mathrm{H}^{+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{NO}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O}$	+0.96
$\mathrm{Pd}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \operatorname{Pd}(\mathrm{s})$	+0.92
$\operatorname{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \operatorname{Ag}(\mathrm{s})$	+0.80
$\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})$	+0.77
$\mathrm{Cu}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$	$+0.53$
$\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$	$+0.34$
$\mathrm{Sn}^{4+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}^{2+}(\mathrm{aq})$	+0.15
$2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})$	0 (by definition)
$\mathrm{Fe}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s})$	-0.04
$\mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Pb}(\mathrm{s})$	-0.13
$\mathrm{Sn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}(\mathrm{s})$	-0.14
$\mathrm{Ni}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Ni}(\mathrm{s})$	-0.24
$\mathrm{Cd}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cd}(\mathrm{s})$	-0.40
$\mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s})$	-0.44
$\mathrm{Cr}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Cr}(\mathrm{s})$	-0.74
$\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}(\mathrm{s})$	-0.76
$2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{OH}^{-}(\mathrm{aq})$	-0.83
$\mathrm{Cr}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cr}(\mathrm{s})$	-0.89
$\mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Al}(\mathrm{s})$	-1.68
$\mathrm{Sc}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Sc}(\mathrm{s})$	-2.09
$\mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Mg}(\mathrm{s})$	-2.36
$\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Na}(\mathrm{s})$	-2.71
$\mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Ca}(\mathrm{s})$	-2.87
$\mathrm{Li}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Li}(\mathrm{s})$	-3.04

CHEM1102 -CHEMISTRY 1B

Useful formulas

Quantum Chemistry	Electrochemistry
$E=h \nu=h c / \lambda$	$\Delta G^{\circ}=-n F E^{\circ}$
$\lambda=h / m v$	Moles of $e^{-}=I t / F$
$E=-Z^{2} E_{\mathrm{R}}\left(1 / n^{2}\right)$	$E=E^{\circ}-(R T / n F) \times 2.303 \log Q$
$\Delta x \cdot \Delta(m v) \geq h / 4 \pi$	$=E^{\circ}-(R T / n F) \times \ln Q$
$q=4 \pi r^{2} \times 5.67 \times 10^{-8} \times T^{4}$	$E^{\circ}=(R T / n F) \times 2.303 \log K$
$T \lambda=2.898 \times 10^{6} \mathrm{~K} \mathrm{~nm}$	$=(R T / n F) \times \ln K$
	$E=E^{\circ}-\frac{0.0592}{n} \log Q\left(\text { at } 25^{\circ} \mathrm{C}\right)$
Acids and Bases	Gas Laws
$\mathrm{p} K_{\mathrm{w}}=\mathrm{pH}+\mathrm{pOH}=14.00$	$P V=n R T$
$\mathrm{p} K_{\mathrm{w}}=\mathrm{p} K_{\mathrm{a}}+\mathrm{p} K_{\mathrm{b}}=14.00$	$\left(P+n^{2} a / V^{2}\right)(V-n b)=n R T$
$\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \left\{\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]\right\}$	$E_{\mathrm{k}}=1 / 2 m v^{2}$
Radioactivity	Kinetics
$t_{1 / 2}=\ln 2 / \lambda$	$t / 2=\ln 2 / k$
$A=\lambda N$	$k=A \mathrm{e}^{-E a / R T}$
$\ln \left(N_{0} / N_{\mathrm{t}}\right)=\lambda t$	$\ln [\mathrm{A}]=\ln [\mathrm{A}]_{0}-k t$
${ }^{14} \mathrm{C}$ age $=8033 \ln \left(A_{0} / A_{\mathrm{t}}\right)$ years	$\ln \frac{k_{2}}{k_{1}}=\frac{E_{a}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)$
Mathematics	Thermodynamics \& Equilibrium
If $\mathrm{a}^{2}+\mathrm{b} x+\mathrm{c}=0$, then $x=\underline{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}$	$\Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ}$
2a	$\Delta G=\Delta G^{\circ}+R T \ln Q$
$\ln x=2.303 \log x$	$\Delta G^{\circ}=-R T \ln K$
Area of circle $=\pi r^{2}$	$\Delta_{\text {univ }} S^{\circ}=R \ln K$
Surface area of sphere $=4 \pi r^{2}$	$\ln \frac{K_{2}}{\sim}=\frac{-\Delta H^{\circ}}{\infty}\left(\frac{1}{m}-\frac{1}{\infty}\right)$
$\text { Volume of sphere }=4 / 3 \pi r^{3}$	$\overline{K_{1}} \quad R \quad\left(\overline{T_{2}} \quad \overline{T_{1}}\right)$
Miscellaneous	Colligative Properties \& Solutions
$A=-\log \frac{I}{I}$	$\Pi=c R T$
I_{0}	$P_{\text {solution }}=X_{\text {solvent }} \times P_{\text {solvent }}^{\circ}$
$A=\varepsilon c l$	$\mathrm{c}=k \mathrm{p}$
$E=-A \frac{e^{2}}{} N_{\mathrm{A}}$	$\Delta T_{\mathrm{f}}=K_{\mathrm{f}} m$
$4 \pi \varepsilon_{0} r$	$\Delta T_{\mathrm{b}}=K_{\mathrm{b}} m$

				$[1$＇zऽ $]$ SG wankussua 66	［I＇ZSZ］ 戸う wnivaonvo 86		$\begin{gathered} {[1 \cdot\llcorner\downarrow z]} \\ \mathbf{u} \boldsymbol{u}, \\ \text { wanano } \\ 96 \end{gathered}$		$\begin{gathered} {[1 ; 6 £ Z]} \\ \mathbf{n}_{\mathbf{d}} \\ \text { wavoulnd } \\ \downarrow 6 \end{gathered}$	$\begin{gathered} {[0 \angle\lfloor\Sigma]} \\ \mathbf{d} \mathbf{N} \\ \text { мамㄴuav } \\ \mathcal{E 6} \end{gathered}$				$\begin{gathered} {[0 \angle \angle Z Z]} \\ \mathbf{y V} \\ \text { wanuruv } \\ 68 \end{gathered}$	Saionilov
$\angle 6 \pm \angle I$	t0 ¢ ¢ L	£6．891	9でし91	£6＇t91	0¢＇29］	E688 1	¢でLSI	96．ISI	toci	［6＇ttI］	ャでかも1	16．0tI	2İ0tI	L688I	
nT	q／	$\mathbf{W u}_{\mathbf{L}}$	J＇G	OH	$\boldsymbol{\Lambda} \mathbf{G}$	q／	\mathbf{p}	ng	US	$\mathbf{U d}_{\mathbf{d}}$	$\mathbf{p N}_{N}$	$\mathrm{I}_{\mathbf{d}}$	O）	${ }^{6} \mathbf{T}$	
мпйм	кияяаи		wnaxa	маптои	warsoussa	～пияя	wantroars	wnuonas ¢9	wnarvves		мnuxaoas	manw xosasvad	${ }_{\text {\％мпиa }}$	мпмทhivi	SaIonvilinvi
IL	02	69	89	L9	99	¢9	†9	$\varepsilon 9$	29	19	09	6	85	LS	

N			囟	N			－		
							N		
		$\left.\left\lvert\, \begin{array}{ll} \infty \\ \infty \\ 0 & < \end{array}\right.\right]$					ω		
		$\underset{\sim}{\circ} \text { N }$	$\underset{\infty}{+}$				＋		
		园					Ur		
N							\bigcirc		
							\checkmark		
			\|ccc	cc	con				∞
			\|lll				\bigcirc		
			$\left\lvert\, \begin{aligned} & \text { un } \\ & \infty \\ & \underset{0}{2} \\ & Z \end{aligned}\right.$				σ		
			$\underbrace{\omega}_{0}$				ニ		
${\underset{\sim}{\sim}}_{\sim}^{\sim}$							N		
			or on				ω		
事				$\underbrace{\infty}_{0}$			戸		
							Er		
				\mathfrak{N}	$\mid \stackrel{\rightharpoonup}{8} 0$		の		
	$\begin{array}{\|c} N \\ 0 \\ 0 \\ 0 \end{array}$		\|o		O		\ddagger		
			我	$\left\lvert\, \begin{array}{ll} \text { Co } \\ \dot{\circ} \mathrm{C} \end{array}\right.$			∞		

