22/05(a)

The University of Sydney

CHEMISTRY 1B - CHEM1102

SECOND SEMESTER EXAMINATION

CONFIDENTIAL

NOVEMBER 2003

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY NAME	SID NUMBER	
OTHER NAMES	TABLE NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 16 pages of examinable material.
- Complete the written section of the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a •.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question and a Periodic Table may be found on a separate data sheet.
- Pages 15, 18 & 20 are for rough working only.

OFFICIAL USE ONLY

Multiple choice section

		Marks
Pages	Max	Gained
2-10	50	

Short answer section

		Marks		
Page	Max	Gaine	d	Marker
11	7			
12	7			
13	7			
14	12			
16	8			
17	2			
19	7			
Total	50			
Check	Total			

2003-N-2

• Consider the compound with formula [Cr(H ₂ O) ₅ Cl]Cl ₂ .							Marks 3	
Name	the compour	nd.						
What is the oxidation state of the metal?								
What is the co-ordination number of the metal?								
• Write balanced equations for each of the following reactions. If there is no reaction then write "no reaction".								4
Data:	Sn ⁴⁺ (aq)	+	$2e^{-}$	<u></u>	Sn ²⁺	(aq)	$E^{\circ} = +0.15 \text{ V}$	
	Fe ³⁺ (aq)	+	e	4	Fe ²⁺	(aq)	$E^{\circ} = +0.77 \text{ V}$	
	Br ₂ (aq)	+	$2e^{-}$	<u> </u>	2Br	(aq)	$E^{\circ} = +1.10 \text{ V}$	
Excess an	nmonia is ad	lded	to an ac	queous sol	ution of	magnesi	um sulfate.	
Excess an	nmonia is ac	lded	to an ac	queous sol	ution of	cobalt(II) chloride.	
	21 -							
A solution	n of Fe ²⁺ ion	is is a	added to	bromine	water.			
An acidifi	ed solution	of (N	JH4)2Fe	$(\mathbf{SO}_4)_2$ is t	added to	SnCl ₂ s	olution	
	ed solution	01 (1	(114)/21 C	(504)2 13 6		oner ₂ so	Jution.	
								1

•	A hydrogen/oxygen fuel cell uses the rea many hours can the cell operate at 1.50 Å 200 atm and 298 K in the presence of an as an ideal gas under these conditions.	action $2H_2(g) + O_2(g) \rightarrow 2H_2O(l)$. For how A, if it is supplied by a 1.00 L tank of $H_2(g)$ at a excess of $O_2(g)$? Assume that H_2 functions	Marks 7
		ANSWER:	

Marks • Give the constitutional formula and the name of the major organic product of each of 12 the following reactions. conc. HNO₃ / conc. H₂SO₄ Name: 1. Na $^{\oplus \ominus}$ NH₂ 2. CH₃CH₂I Name: HBr -CH₃ Name: CH₃ hot conc. KOH H₃C ĊH₃ Name: OH $\operatorname{Cr_2O_7}^{2 \ominus}/\operatorname{H}^\oplus/\operatorname{H_2O}$ Name: -Ω concentrated H^{\oplus} / H_2O / heat NH₂ Name:

Marks

2

State whether the product formed by this reaction is *achiral*, the (S)-*enantiomer*, the (R)-*enantiomer*, a *meso-compound* or a *racemic mixture*.

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

Marks • The incomplete proposed mechanism for the reaction of 2-methyl-2-propanol with 4 HCl is shown below. Complete the mechanism by showing formal charges on all appropriate atoms and by adding curly arrows to illustrate the bonding changes that Hint: Four (4) curly arrows and four (4) charges are required. take place. Η Η H₃C H₃C -Cl: H-H₃C Η H₃C ℃H3 Ĥ Η Η CH₃ H₃C :Cl: H₃C H₃C CH₃ CH3 3 • The incomplete proposed mechanism for the hydrolysis of ethyl acetate is shown below. Complete the mechanism by adding curly arrows to illustrate the bonding changes that take place. Hint: Six (6) curly arrows (but no charges) are required. CH₂CH₃ CH_2CH_3 Η • 🖂 H₃ H₃C ⊖;;;;;—н ⊖, CH₂CH₃ \bigcirc CH₂CH₃ H_3 H_3 Η

Thermodynamics & Equilibrium

 $\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$

 $\Delta G = \Delta G^{\circ} + RT \ln Q$

 $\Delta G^{\circ} = -RT \ln K$

 $K_{\rm p} = K_{\rm c} (RT)^{\Delta \rm n}$

CHEM1102 - CHEMISTRY 1B

DATA SHEET

Physical constants	Conversion factors
Avogadro constant, $N_{\rm A} = 6.022 \times 10^{23} \text{ mol}^{-1}$	1 atm = 760 mmHg = 101.3 kPa
Faraday constant, $F = 96485 \text{ C mol}^{-1}$	0 °C = 273 K
Planck constant, $h = 6.626 \times 10^{-34} \text{ J s}$	$1 L = 10^{-3} m^3$
Speed of light in vacuum, $c = 2.998 \times 10^8 \text{ m s}^{-1}$	$1 \text{ Å} = 10^{-10} \text{ m}$
Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$	$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$
$= 0.08206 \text{ L} \text{ atm } \text{K}^{-1} \text{ mol}^{-1}$	$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$
Volume of 1 mole of ideal gas at 1 atm and 25 $^{\circ}$ C = 24.5 L	

Volume of 1 mole of ideal gas at 1 atm and 0 $^{\circ}$ C = 22.4 L

	Useful formulas	
Acids and Bases	Kinetics	Radioactivity
$pK_w = pH + pOH = 14$	$k = A e^{-Ea/RT}$	A = kN
$pK_{\rm w} = pK_{\rm a} + pK_{\rm b} = 14$	$t_{1/2} = \ln 2/k$	$\ln(N_0/N_t) = kt$
$pH = pK_a + \log\{[A^-] / [HA]\}$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_{\rm o} - kt$	$t = 8033 \ln(A_0/A_t)$

Electrochemistry
$\Delta G^{\circ} = -nFE^{\circ}$
$E = E^{\circ} - (RT/nF) \ln Q$
$E^{\circ} = (RT/nF) \ln K$
Moles of $e^- = It/F$

Quantum Chemistry

 $E = h\mathbf{v} = hc/\lambda$ $\lambda = h/mu$

Gas Laws

PV = nRT $(P + n^{2}a/V^{2})(V - nb) = nRT$

Deci	mal fract	ions	Deci	Decimal multiples					
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol				
10^{-3}	milli	m	10^{3}	kilo	k				
10^{-6}	micro	μ	10^{6}	mega	Μ				
10^{-9}	nano	n	10 ⁹	giga	G				
10^{-12}	pico	р							

A periodic table is printed on the other side of this data sheet. Atomic weights are included in the periodic table.

Colligative properties

 $\pi = cRT$

 $\Delta T_{\rm f} = K_{\rm f} m$

 $\Delta T_{\rm b} = K_{\rm b}m$

 $\mathbf{p} = k\mathbf{c}$

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 HYDROGEN]																2 HELIUM
Н																	He
1.008		-											-		-		4.003
3	4											5	6	7	8	9	10
LITHIUM T.i	BERYLLIUM											BORON	CARBON	NITROGEN	OXYGEN	FLUORINE	NEON Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
SODIUM	MAGNESIUM											ALUMINIUM	SILICON	PHOSPHORUS	SULFUR	CHLORINE	ARGON
1Na 22.99	1 VIG											AI 26.98	SI 28.09	P 30.97	32.07	CI 35.45	АГ 39.95
19	20	21	22	2	24	25	26	27	28	29	30	31	32	33	34	35	36
POTASSIUM	CALCIUM	SCANDIUM	TITAN	UM VANAD	M CHROMIUM	MANGANESE	IRON	COBALT	NICKEL	COPPER	ZINC	GALLIUM	GERMANIUM	ARSENIC	SELENIUM	BROMINE	KRYPTON
K	Ca	Sc			Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.8	38 50.9	4 52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.59	74.92	78.96	79.90	83.80
3/ RUBIDIUM	38 STRONTIUM	39 yttrium	4(ZIRCON) 4] пим мюви	42 M MOLYBDENUM	43 TECHNETIUM	44 RUTHENIUM	45 RHODIUM	40 palladium	4 / SILVER	48 cadmium	49 INDIUM	50 TIN	51 ANTIMONY	52 TELLURIUM	53 IODINE	54 XENON
Rb	Sr	Y	Z	r NI	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
85.47	87.62	88.91	91.2	92.9	1 95.94	[98.91]	101.07	102.91	106.4	107.87	112.40	114.82	118.69	121.75	127.60	126.90	131.30
55	56	57-71	72	2 73	74	75	76	77	78	79	80	81	82	83	84	85	86
CAESIUM	BARIUM		HAFN	f Tanta	W TUNGSTEN	RHENIUM	OSMIUM	IRIDIUM	PLATINUM PL		Ho	THALLIUM	Ph	BISMUTH	POLONIUM	ASTATINE	RADON
132.91	137.34		178.	49 180.	183.85	186.2	190.2	192.22	195.09	196.97	200.59	204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
87	88	89-103	3 10	4 10	5 106	107	108	109									
FRANCIUM	RADIUM Rg		RUTHERFO	rdium dubni	M SEABORGIUM	BOHRIUM Rh	HASSIUM	MEITNERIUM									
[223.0]	[226.0]		[26	1] [26]	[] [266]	[262]	[265]	[266]									
		1		1 1													
	57	7	58	59	60	61	62	63	64	65	5	66	67	68	69	70	71
LANTHANID	DES LANTHA	NUM C		PRASEODYMIU Dm	NEODYMIUM	PROMETHIUM Dm	SAMARIUM	EUROPIUM	GADOLINIU	M TERBI	UM DYS		HOLMIUM		THULIUM	YTTERBIUM VL	LUTETIUM
	138	a 91 14	0.12	FI [*] 140.91	144.24	F III [144.9]	5111 150.4	Eu 151.96	157.2	5 158	.93 10	Dy 52.50	HU 164.93	EF 167.26	168.93	173.04	174.97
	80)	90	91	92	93	94	95	96	97	7	98	99	100	101	102	103
ACTINIDE	S ACTIN	IUM TH	ORIUM	PROTACTINIUM	URANIUM	NEPTUNIUM	PLUTONIUM	AMERICIUM	CURIUM	BERKEL	LIUM CAL	IFORNIUM E	INSTEINIUM	FERMIUM	MENDELEVIUM	NOBELIUM	LAWRENCIUM
			l'h			Np					K	Cf	Es	Fm	Md	NO	
	[227	.0] 23	2.04	[251.0]	238.03	[237.0]	[239.1]	[243.1]	[247.1] [247	.1] [2	52.1]	232.1]	[237.1]	[236.1]	[239.1]	[260.1]

PERIODIC TABLE OF THE ELEMENTS

CHEM1102 - CHEMISTRY 1B

November 2003

22/05(b)