22/05(a)

The University of Sydney

CHEMISTRY 1B - CHEM1102

SECOND SEMESTER EXAMINATION

CONFIDENTIAL

NOVEMBER 2004

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY NAME	SID NUMBER	
OTHER NAMES	TABLE NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 20 pages of examinable material.
- Complete the written section of the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a •.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheet.
- Pages 18, 22 & 24 are for rough working only.

OFFICIAL USE ONLY

Multiple choice section

Short answer section

		Marks		
Page	Max	Gained		Marker
13	4			
14	6			
15	10			
16	3			
17	3			
19	8			
20	5			
21	6			
23	5			
Total	50			
Check	Total			

CHEM1102	2004-N-2	November 2004	22/05(a)
Regulation of our bloc person the blood pH d our body regulate the p	od's pH value is of vital impor oes not vary by more than 0.2 pH of blood?	tance for our health. In a healthy from the average 7.4. How does	Marks 4
During exercise, CO ₂ this have on the pH of	is produced at a rapid rate in 1 blood? Why?	nuscle tissue. What effect does	
Hyperventilation (rapi effect does hyperventi	d and deep breathing) can occ lation have on the pH of bloo	cur during intense exertion. What d? Why?	

CHEM1102 2004-N	-3	November 2004	22/05(a)
• A lecture demonstration showed that a l through a block of ice (solid water) with phenomenon.	oop of wire with a w out the block falling	eight attached can cut gapart. Explain this	Marks 3
			_
• The half-life for the first order decomport Calculate the rate constant, <i>k</i> , at this term	sition of $N_2O_5(g)$ is perature.	6.00×10^4 s at 20 °C.	3
	<i>k</i> =		_
What percentage of the N ₂ O ₅ molecules	will have reacted af	ter one hour?	
	Answer:		

• Carbon has a number of allotropes, the two major ones being graphite and diamond. What are allotropes?								
Give an example	e of a pair of	allotropes not in	volving carbon					
The phase diagr normal conditio	am of carbon ns. Why then	shows that diam does diamond e	ond is not the sexist under norm	stable allotrope under nal conditions?				
Complete the fo	llowing table				6			
Formula	Oxidation state of transition metal	Coordination number of transition metal	Number of <i>d</i> -electrons in metal in complex ion	Species formed upon dissolving in water				
K ₂ [Ni(CN) ₄]								
[Cr(NH ₃) ₅ Cl]Cl ₂								
[Co(en) ₃]Br ₃								

 $en = ethylenediamine = NH_2CH_2CH_2NH_2$

CHEM1102	2004-N-5	N-5 November 2004				
• Find the concentration of H_3O^+ in a 0.60 M aqueous solution of nitrous acid. The acid dissociation constant of HNO_2 is $K_a = 7.1 \times 10^{-4}$ M.						
	Answer:					
• An aqueous solution of a weal pOH of the solution.	k acid has $[H_3O^+] = 2$	$.54 \times 10^{-4}$ M. Find the pH and	1			
pH =	pOH =					

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

•	In a major industrial process alumina, Al_2O_3 , is isolated from bauxite, a mineral consisting of mainly Al_2O_3 and Fe_2O_3 . The first step of the process is treatment of the ore with concentrated NaOH solution. Describe how this step allows separation of the two compounds. Use chemical equations as part of your explanation.	Marks 3
	In a second step CO_2 is used to precipitate Al_2O_3 from solution. Write a chemical equation for this step.	
	What property of Al ₂ O ₃ is exploited in these two steps?	

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

Marks Compound **X** was isolated as a derivative of a natural product. • 5 Η Х H₃C H Ö What is the stereochemistry about the C6-C7 double bond? Write (E) or (Z). Carbon 3 of X is a stereogenic centre. List the substituents attached to C3 in descending order of priority according to the sequence rules. highest priority lowest priority What is the stereochemistry at C3? Write (R) or (S). Oxidation of **X** with $Cr_2O_7^{2^{\bigcirc}}/H^{\oplus}$ produces a new compound **Y**. Give the constitutional formula for compound Y. Is compound **Y** obtained as an (*R*)-enantiomer, an (*S*)-enantiomer, a racemic mixture or an achiral compound?

Marks • Draw the constitutional formula of the major organic product formed in the following 3 reactions. 0 1. CH₃CH₂MgBr $2.~H^{\oplus}/~H_2O$ H_2 / Pd 1. NaBH₄ 2. H^{\oplus}/H_2O 3 • Show clearly the reagents you would use to carry out the following chemical conversions. Draw constitutional formulas for any intermediate compounds. NOTE: More than one step is necessary. NH₂ CH₂OH) O

Marks Draw the repeating unit of the polymer formed in the following reactions. • 2 \mathbf{O} С Cl Cl H₂N NH₂ HO Cl • The incomplete proposed mechanism for the reaction of acetyl chloride with two 3 equivalents of OH^{\ominus} is shown below. The reaction occurs in three steps. In each step, complete the mechanism by adding curly arrows to illustrate the bonding changes that take place. CH₃ CH₃ ⊖ iÖ—H ..⊖ :Cl: CH_3 Cl: CH₃ Н Ö. Ö. CH₃ CH₃ Η Η ⊖ ∺Ö—H

CHEM1102 - CHEMISTRY 1B

DATA SHEET

Physical constants

Avogadro constant, $N_{\rm A} = 6.022 \times 10^{23} \text{ mol}^{-1}$ Faraday constant, $F = 96485 \text{ C mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \text{ J s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \text{ m s}^{-1}$ Rydberg constant, $E_{\rm R} = 2.18 \times 10^{-18} \text{ J}$ Boltzmann constant, $k_{\rm B} = 1.381 \times 10^{-23} \text{ J K}^{-1}$ Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ $= 0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors

1 atm = 760 mmHg = 101.3 kPa 0 °C = 273 K 1 L = 10^{-3} m³ 1 Å = 10^{-10} m 1 eV = 1.602×10^{-19} J 1 Ci = 3.70×10^{10} Bq 1 Hz = 1 s^{-1}

Decimal fractions

Fraction	Prefix	Symbol
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	р

Decimal multiples

Multiple	Prefix	Symbol
10^{3}	kilo	k
10^{6}	mega	Μ
10^{9}	giga	G

CHEM1102 - CHEMISTRY 1B

Standard Reduction Potentials, E^{o}

Reaction	E° / V
$\mathrm{Co}^{3+}(\mathrm{aq}) \ + \ \mathrm{e}^{-} \ \rightarrow \ \mathrm{Co}^{2+}(\mathrm{aq})$	+1.82
$\operatorname{Ce}^{4+}(\operatorname{aq}) + \operatorname{e}^{-} \rightarrow \operatorname{Ce}^{3+}(\operatorname{aq})$	+1.72
$Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80
$\mathrm{Fe}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})$	+0.77
$\mathrm{Cu}^+(\mathrm{aq}) + \mathrm{e}^- \rightarrow \mathrm{Cu}(\mathrm{s})$	+0.53
$\mathrm{Cu}^{2+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2H^+(aq) + 2e^- \rightarrow H_2(g)$	0 (by definition)
$\operatorname{Fe}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Fe}(s)$	-0.04
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.24
$\operatorname{Fe}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Fe}(s)$	-0.44
$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Cr}(s)$	-0.74
$\operatorname{Zn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Zn}(s)$	-0.76
$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83
$\operatorname{Cr}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cr}(s)$	-0.89
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.68
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2.36
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71

CHEM1102 - CHEMISTRY 1B

Useful Formulas

Quantum	Chemistry
---------	-----------

 $E = hv = hc/\lambda$ $\lambda = h/mu$ $4.5k_{\rm B}T = hc/\lambda$ $E = Z^2 E_{\rm R}(1/n^2)$

Kinetics

 $k = A e^{-Ea/RT}$ $A = \lambda N$ $t_{1/2} = \ln 2/k$ $\ln(N_0/N_t) = \lambda t$ 14 C age = 8033 ln(A_0/A_t) $\ln[A] = \ln[A]_o - kt$

Gas Laws Acids and Bases PV = nRT $pK_{w} = pH + pOH = 14.00$ $(P + n^2 a/V^2)(V - nb) = nRT$

Colligative Properties

 $\pi = cRT$ $\mathbf{p} = k\mathbf{c}$ $P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$ $\Delta T_{\rm f} = K_{\rm f} m$ $\Delta T_{\rm b} = K_{\rm b}m$

Polymers

$$R_{\rm g} = \sqrt{\frac{n l_0^2}{6}}$$

Thermodynamics & Equilibrium $\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$ $\Delta G = \Delta G^{\circ} + RT \ln Q$ $\Delta G^{\circ} = -RT \ln K$ $K_{\rm p} = K_{\rm c} (RT)^{\Delta n}$

Radioactivity

 $\mathbf{p}K_{\mathrm{w}} = \mathbf{p}K_{\mathrm{a}} + \mathbf{p}K_{\mathrm{b}} = 14.00$ $pH = pK_a + \log\{[A^-] / [HA]\}$

Electrochemistry

$$\Delta G^{\circ} = -nFE^{\circ}$$

$$Moles \ of \ e^{-} = It/F$$

$$E = E^{\circ} - (RT/nF) \ln Q$$

$$= E^{\circ} - (RT/nF) \times 2.303 \log Q$$

$$E^{\circ} = (RT/nF) \ln K$$

$$= (RT/nF) \times 2.303 \log K$$

$$E = E^{\circ} - \frac{0.0592}{n} \log Q \ (at \ 25 \ ^{\circ}C)$$

Mathematics

If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $\ln x = 2.303 \log x$

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 hydrogen H 1.008		_															2 нешим Не 4.003
3	4											5 BORON	6	7	8 OXYGEN	9 ELUORINE	10 NEON
Li	Be											В	С	Ν	0	F	Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	MAGNESIUM											ALOMINIOM	Silicon	PHOSPHOROS	S	CI	ARGON
22.99	24.31											26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K		SCANDIUM	Ti	VANADIUM	CHROMIUM	MANGANESE	Fe	Совалт	Nickel	Соррек	Zn	GALLIOM	Germanium	ARSENIC	Selenium	Bromine	KRYPION
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	strontium Sr	YTTRIUM V	zirconium 7 r	NIOBIUM	MOLYBDENUM	TECHNETIUM	RUTHENIUM P11	RHODIUM Ph	PALLADIUM Dd	SILVER	сармим С.Д	INDIUM	TIN Sn	ANTIMONY	TELLURIUM	IODINE	XENON X O
85.47	87.62	∎ 88.91	91.22	92.91	95.94	[98.91]	101.07	102.91	106.4	107.87	112.40	114.82	118.69	121.75	127.60	126.90	131.30
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	BARIUM		HAFNIUM	TANTALUM	TUNGSTEN	RHENIUM		IRIDIUM	PLATINUM	GOLD	MERCURY	THALLIUM		BISMUTH		ASTATINE	RADON
US	Da 137 34		178 40	180.95	VV 183.85	Ke	190.2	IГ 192.22	PL 195.09	AU 196.97	200 59	1 204 37	PD	208.98	PO	AL	KI [222.0]
87	88	89-103	104	100.55	105.65	100.2	108	109	175.07	170.77	200.57	204.57	201.2	200.90	[210.0]	[210.0]	[222.0]
FRANCIUM			RUTHERFORD		SEABORGIUM	BOHRIUM	HASSIUM	MEITNERIUM									
Fr	Ka		KI	DD	5g	BN	HS [265]	IVIT [266]									
[225.0]	[220.0]		[201]	[202]	[200]	[202]	[203]	[200]									
	57	7 5	58	59	60	61	62	63	64	64	5	66	67	68	69	70	71
LANTHANID	ES LANTHA	NUM CE	RIUM I	PRASEODYMIUM	NEODYMIUM	PROMETHIUM	SAMARIUM	EUROPIUM	GADOLINIU	M TERBI	UM DY	SPROSIUM	HOLMIUM	ERBIUM	THULIUM	YTTERBIUM	LUTETIUM
	La		e	Pr	Nd	Pm	Sm	Eu	Gd	T	0	$\mathbf{D}\mathbf{y}$	H0	Er	168 02	Y b	Lu
	138.	$\frac{14}{2}$	0.12	01	02	03	0/	05	06) 138. 07	7 I	02.30	00	107.20	108.95	1/3.04	1/4.9/
ACTINIDES	ACTINI		ORIUM	71 PROTACTINIUM	フム URANIUM	フJ NEPTUNIUM	74 PLUTONIUM	Э Ј Americium	90 CURIUM	9 J BERKEL	LIUM CA	70 LIFORNIUM E	フフ NSTEINIUM	1 UU FERMIUM	1 U I MENDELEVIUM	102 NOBELIUM	103 LAWRENCIUM
	A	с Т	h	Pa	U	Np	Pu	Am	Cm	B	k	Cf	Es	Fm	Md	No	Lr
	[227]	.0] 232	2.04	[231.0]	238.03	[237.0]	[239.1]	[243.1]	[247.1] [247	[.1] [2	252.1] [252.1]	[257.1]	[256.1]	[259.1]	[260.1]

PERIODIC TABLE OF THE ELEMENTS

November 2004

CHEM1102 - CHEMISTRY 1B

22/05(b)