The University of Sydney

CHEMISTRY 1B - CHEM1102

CONFIDENTIAL

SECOND SEMESTER EXAMINATION

NOVEMBER 2005

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY	SID	
NAME	NUMBER	
OTHER	TABLE	
NAMES	NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 20 pages of examinable material.
- Complete the written section of the examination paper in **INK**.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a •.
- Electronic calculators, including programmable calculators, may be used.
 Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheet.
- Pages 17, 22 & 24 are for rough working only.

OFFICIAL USE ONLY

Multiple choice section

	Marks			
Pages	Max	Gained		
2-11	44			

Short answer section

	Marks			
Page	Max	Gaine	d	Marker
12	5			
13	5			
14	10			
15	3			
16	8			
18	5			
19	5			
20	2			
21	7			
23	6			
Total	56			

CHEM1102 2005-N-2 November 2005 22/10(a)

Calcium oxalate is a major constituent of product constant for calcium oxalate give made by dissolving 0.0061 g of CaC ₂ O ₄ ·	en that a saturated solution of the salt can be	N
	Answer:	
A sample of 2.0 mg of Cu(OH) ₂ is added 8.00. Will all of the Cu(OH) ₂ dissolve? (The $K_{\rm sp}$ of Cu(OH) ₂ is 4.8×10^{-20} M ³ .)	I to 1.0 L of a solution buffered at a pH of Show all working.	

5

• The following data have been obtained for the rapid reaction between the hypochlorite and iodide ions.

 $OCl^{-}(aq) + \Gamma(aq) \rightarrow O\Gamma(aq) + C\Gamma(aq)$

[OCl ⁻ (aq)] / M	[I ⁻ (aq)] / M	Rate / M s ⁻¹
1.5×10^{-3}	1.5×10^{-3}	1.36×10^{-4}
3.0×10^{-3}	1.5×10^{-3}	2.72×10^{-4}
1.5×10^{-3}	3.0×10^{-3}	2.72×10^{-4}

What is the order of this reaction with respect to each reagent?

Calculate the rate of the reaction when [OCl⁻(aq)] = 2.5×10^{-3} M and [Γ (aq)] = 4.0×10^{-3} M.

Answer:

CHEM1102	2005-N-4	November 2005	22/10(a)
CHENTIO	2003-11- 1	11010111001 2003	22/10(a)

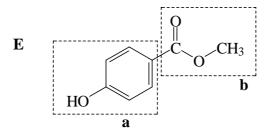
 Explain in terms of alkali metals (Ground 		_		on energies why the
`	1 / 1			
Compounds of <i>d</i> -b to represent atomic				Using the box notation
			•	
Complete the follow	wing table.			
Formula	Oxidation	Coordination		Species formed upon
	state of transition	number of transition	<i>d</i> -electrons in metal in	dissolving in water
	metal	metal	complex ion	
			1	
$K_3[FeF_6]$				
Cr(NH ₃) ₅ (H ₂ O)]Cl ₃				
$[Zn(en)Cl_2]$				

 $en = ethylenediamine = NH_2CH_2CH_2NH_2 \\$

• Define what is meant by an "allotrope". Give an example of a pair of allotropes involving phosphorus and a pair <i>not</i> involving phosphorus.	Marks 3

November 2005 22/10(a)

2005-N-5


CHEM1102

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

CHEM1102	2005-N-6	November 2005	22/10(a)
• Solution A consists Solution A. The pK	of a 0.15 M aqueous solution of HF at 25 a of HF is 3.17.	5 °C. Calculate the pH of	Marks 8
			<u> </u>
	pH =		
At 25 °C, 1.00 L of Calculate the pH of	Solution B consists of 11.62 g of KF diss Solution B.	solved in water.	
	pH =		1
	is poured into Solution A (1.00 L) and all e pH of the final solution.	llowed to equilibrate at	
			-
	pH =		-
If you wanted to adi	ust the pH of the mixture of Solution A		-
	e exactly equal to 3.00, which component	t	

in the solution would you need to increase in concentration?

• The structure of methyl 4-hydroxybenzoate, **E**, a constituent of many suntan lotions, is given below.

Give the molecular formula of compound \mathbf{E} .

Name the functional groups in molecule **E** indicated by the boxes "**a**" and "**b**".

a: b:	
-------	--

Give the structure(s) of all organic products formed when compound ${\bf E}$ is treated with the following reagents. If no reaction occurs, write "NO REACTION".

cold NaOH (1 M)	
hot NaOH (4 M)	
hot HCl (4 M)	

• Draw the constitutional formula of the major organic product formed in each of the following reactions.

Marks 5

 $\operatorname{Cr}_2\operatorname{O_7}^{2\ominus}/\operatorname{H}^{\oplus}$

HO

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

• Show the structure(s) of all products formed when dipeptide **F** is treated with hot, concentrated HCl.

Marks 2

$$\mathbf{F}$$
 $H_{3}C$
 H
 N
 $COOH$
 O

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

ullet Butanone is treated first with phenylmagnesium bromide in diethyl ether and then with dilute aqueous acid, to yield alcohol G.

Marks 7

State whether G is obtained as the (R)-enantiomer, the (S)-enantiomer, a racemic mixture, or is achiral.

List below, the substituents on the stereogenic carbon atom in G, in decreasing priority (ie. from highest to lowest priority), as determined by the sequence rules.

highest priority			lowest priority
Draw the (<i>R</i>)-enant showing the correct stereochemistry.			

G is treated with concentrated sulfuric acid to give a mixture of three alkenes, H, I and J. Compounds H and I are diastereomers, while H and J (and I and J) are constitutional isomers. Give the structures and systematic names for H, I and J.

Н	Ι	J
Name:	Name:	Name:
Give the structure of the probation obtained when alkene J is		

Give the structure of the product obtained when alkene **J** is treated with hydrogen in ethanol, in the presence of palladium on charcoal.

• In the space below, devise a synthesis of ethyl butyrate (ethyl butanoate), starting from 1-bromopropane. Note that your synthetic route may require more than one step. Show clearly the reagents you would use and draw constitutional formulas for any intermediate compounds.

Marks 4

• The incomplete proposed mechanism for the reaction of 2-methyl-2-butene with HBr is shown below. Complete the mechanism by adding curly arrows to illustrate the bonding changes that take place.

2

Which one of the two reactants is the electrophile?

22/10(b) November 2005

CHEM1102 - CHEMISTRY 1B DATA SHEET

Physical constants

Avogadro constant, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

Faraday constant, $F = 96485 \text{ C mol}^{-1}$

Planck constant, $h = 6.626 \times 10^{-34} \,\mathrm{J s}$

Speed of light in vacuum, $c = 2.998 \times 10^8 \text{ m s}^{-1}$

Rydberg constant, $E_R = 2.18 \times 10^{-18} \text{ J}$

Boltzmann constant, $k_B = 1.381 \times 10^{-23} \text{ J K}^{-1}$

Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$

 $= 0.08206 L atm K^{-1} mol^{-1}$

Charge of electron, $e = 1.602 \times 10^{-19} \text{ C}$

Mass of electron, $m_e = 9.1094 \times 10^{-31} \text{ kg}$

Mass of proton, $m_p = 1.6726 \times 10^{-27} \text{ kg}$

Mass of neutron, $m_{\rm n} = 1.6749 \times 10^{-27} \, {\rm kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 $^{\circ}$ C = 24.5 L

Volume of 1 mole of ideal gas at 1 atm and $0 \, ^{\circ}\text{C} = 22.4 \, \text{L}$

Density of water at 298 K = 0.997 g cm⁻³

Conversion factors

$$1 \text{ atm} = 760 \text{ mmHg} = 101.3 \text{ kPa}$$

$$0 \, ^{\circ}\text{C} = 273 \, \text{K}$$

$$1 L = 10^{-3} m^3$$

$$1 \text{ Å} = 10^{-10} \text{ m}$$

$$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$$

$$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$$

$$1 \text{ Hz} = 1 \text{ s}^{-1}$$

Deci	mal fract	ions	Deci	Decimal multiples						
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol					
10^{-3}	milli	m	10^3	kilo	k					
10^{-6}	micro	μ	10^{6}	mega	M					
10^{-9}	nano	n	10^{9}	giga	G					
10^{-12}	pico	p								

22/10(b) November 2005

CHEM1102 - CHEMISTRY 1B

Standard Reduction Potentials, $E^{\,o}$

Reaction	<i>E</i> ° / V
$\text{Co}^{3+}(\text{aq}) + \text{e}^- \rightarrow \text{Co}^{2+}(\text{aq})$	+1.82
$Ce^{4+}(aq) + e^{-} \rightarrow Ce^{3+}(aq)$	+1.72
$Au^{3+}(aq) + 3e^- \rightarrow Au(s)$	+1.50
$Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$MnO_2(s) \ + \ 4H^+(aq) \ + \ e^- \ \to \ Mn^{3+} \ + \ 2H_2O$	+0.96
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$	+0.80
$Fe^{3+}(aq) + e^{-} \rightarrow Fe^{2+}(aq)$	+0.77
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53
$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2H^+(aq) + 2e^- \rightarrow H_2(g)$	0 (by definition)
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$	-0.04
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2\operatorname{e}^{-} \to \operatorname{Sn}(\operatorname{s})$	-0.14
$Ni^{2+}(aq) + 2e^- \rightarrow Ni(s)$	-0.24
$Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$	-0.44
$Cr^{3+}(aq) + 3e^- \rightarrow Cr(s)$	-0.74
$Zn^{2+}(aq) + 2e^- \rightarrow Zn(s)$	-0.76
$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83
$Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$	-0.89
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.68
$Mg^{2+}(aq) + 2e^- \rightarrow Mg(s)$	-2.36
$Na^{+}(aq) + e^{-} \rightarrow Na(s)$	-2.71
$Ca^{2+}(aq) + 2e^{-} \rightarrow Ca(s)$	-2.87
$Li^{+}(aq) + e^{-} \rightarrow Li(s)$	-3.04

CHEM1102 - CHEMISTRY 1B

Useful formulas

Quantum Chemistry	Radioactivity
$E = hv = hc/\lambda$	$t_{1/2} = \ln 2/\lambda$
$\lambda = h/mv$	$A = \lambda N$
$4.5k_{\rm B}T = hc/\lambda$	$\ln(N_0/N_{\rm t}) = \lambda t$
$E = Z^2 E_{\rm R}(1/n^2)$	14 C age = 8033 ln(A_0/A_t)
$\Delta x \cdot \Delta(mv) \ge h/4\pi$	
Acids and Bases	Gas Laws
$pK_{w} = pH + pOH = 14.00$	PV = nRT
$pK_{\rm w}=pK_{\rm a}+pK_{\rm b}=14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$
$pH = pK_a + \log\{[A^-] / [HA]\}$	
Colligative properties	Kinetics
$\pi = cRT$	$t_{1/2} = \ln 2/k$
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$k = Ae^{-E_{a}/RT}$
p = kc	$\ln[A] = \ln[A]_{o} - kt$
$\Delta T_{ m f} = K_{ m f} m$	$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$
$\Delta T_{\rm b} = K_{\rm b} m$	$k_1 R T_1 T_2$
Electrochemistry	Thermodynamics & Equilibrium
$\Delta G^{\circ} = -nFE^{\circ}$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$
$Moles\ of\ e^- = It/F$	$\Delta G = \Delta G^{\circ} + RT \ln Q$
$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$	$\Delta G^{\circ} = -RT \ln K$
$= E^{\circ} - (RT/nF) \times \ln Q$	$K_{\rm p} = K_{\rm c} (RT)^{\Delta n}$
$E^{\circ} = (RT/nF) \times 2.303 \log K$	
$= (RT/nF) \times \ln K$	
$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$	
Polymers	Mathematics
$R_{ m g}=\sqrt{rac{nl_0^2}{6}}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
	$ \ln x = 2.303 \log x $

PERIODIC TABLE OF THE ELEMENTS

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 H 1.008		_															2 He 4.003
3	4											5	6	7	8	9	10
Lithium	BERYLLIUM Be											BORON B	CARBON	NITROGEN N	OXYGEN	FLUORINE F	Neon Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12	-										13	14	15	16	17	18
SODIUM	MAGNESIUM											ALUMINIUM	SILICON	PHOSPHORUS	SULFUR	CHLORINE	ARGON
Na	Mg											Al	Si	P	S	Cl	Ar
22.99	24.31	2.1	22		2.4	2.5	2.5	25	20	20	20	26.98	28.09	30.97	32.07	35.45	39.95
19 POTASSIUM	20	21 SCANDIUM	22 TITANIUM	23 VANADIUM	24 chromium	25 manganese	26 IRON	27 COBALT	28 NICKEL	29 COPPER	30 zinc	31 gallium	32 GERMANIUM	33 ARSENIC	34 SELENIUM	35 BROMINE	36 KRYPTON
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
RUBIDIUM	STRONTIUM	YTTRIUM	ZIRCONIUM	NIOBIUM	MOLYBDENUM	TECHNETIUM	RUTHENIUM	RHODIUM	PALLADIUM	SILVER	CADMIUM	INDIUM	TIN	ANTIMONY	TELLURIUM	IODINE	XENON
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98.91]	101.07	102.91	106.4	107.87	112.40	114.82	118.69	121.75	127.60	126.90	131.30
55 CAESIUM	56 BARIUM	57-71	72 HAFNIUM	73 TANTALUM	74 TUNGSTEN	75 RHENIUM	76 OSMIUM	77 IRIDIUM	78 PLATINUM	79	80 mercury	81 THALLIUM	82 LEAD	83 bismuth	84 POLONIUM	85 astatine	86 RADON
Cs	Ba		Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.91	137.34		178.49	180.95	183.85	186.2	190.2	192.22	195.09	196.97	200.59	204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
87 Francium	88 RADIUM	89-103	104 RUTHERFORDIUM	105 DUBNIUM	106 SEABORGIUM	107 BOHRIUM	108 hassium	109 meitnerium									
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt									
[223.0]	[226.0]		[261]	[262]	[266]	[262]	[265]	[266]									

LANTHANIDES

ACTINIDES

ES	57 Lanthanum La 138.91	58 CERIUM Ce 140.12	59 PRASEODYMIUM Pr 140.91	60 NEODYMIUM Nd 144.24	61 Promethium Pm [144.9]	62 Sm 150.4	63 Europium Eu 151.96	64 GADOLINIUM Gd 157.25	65 TERBIUM Tb 158.93	66 DYSPROSIUM Dy 162.50	67 ногміим Но 164.93	68 Err 167.26	69 тнилим Тт 168.93	70 Yterbium Yb 173.04	71 Lutetium Lu 174.97
	89 ACTINIUM Ac [227.0]	90 THORIUM Th 232.04	91 PROTACTINIUM Pa [231.0]	92 URANIUM U 238.03	93 NEPTUNIUM Np [237.0]	94 PLUTONIUM PU [239.1]	95 AMERICIUM AM [243.1]	96 curium Cm [247.1]	97 Berkellium Bk [247.1]	98 CALIFORNIUM Cf [252.1]	99 EINSTEINIUM ES [252.1]	100 FERMIUM Fm [257.1]	101 MENDELEVIUM Md [256.1]	102 Nobelium No [259.1]	103 LAWRENCIUM Lr [260.1]