Topics in the November 2006 Exam Paper for CHEM1102

Click on the links for resources on each topic.

2006-N-2:

• Solubility Equilibrium

2006-N-3:

Kinetics

2006-N-4:

- Periodic Trends in Aqueous Oxide
- Coordination Chemistry

2006-N-5:

- Weak Acids and Bases
- Calculations Involving pKa

2006-N-6:

Physical States and Phase Diagrams

2006-N-7:

- Representations of Molecular Structure
- Carboxylic Acids and Derivatives

2006-N-8:

- Alkenes
- Aromatic Compounds
- Alcohols
- Carboxylic Acids and Derivatives

2006-N-9:

Stereochemistry

2006-N-10:

• Synthetic Strategies

The University of Sydney

CHEMISTRY 1B - CHEM1102

CONFIDENTIAL

SECOND SEMESTER EXAMINATION

NOVEMBER 2006

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY	SID	
NAME	NUMBER	
OTHER	TABLE	
NAMES	NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 18 pages of examinable material.
- Complete the written section of the examination paper in **INK**.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a •.
- Electronic calculators, including programmable calculators, may be used.
 Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheet.
- Page 20 is for rough working only.

OFFICIAL USE ONLY

Multiple choice section Marks Pages Max Gained 2-10 44

Short answer section

	Marks			
Page	Max	Gaine	d	Marker
11	2			
12	4			
13	10			
14	8			
15	3			
16	7			
17	6			
18	10			
19	6			
Total	56			

CHEM1102 2006-N-2 November 2006 22/08(a)

•	• Oxalic acid, $H_2C_2O_4$, found in rhubarb, causes muscle spasms by precipitating Ca^{2+} ions from the blood as calcium oxalate, $CaC_2O_4 \cdot H_2O$. Given the solubility product constant for calcium oxalate is 2.3×10^{-9} M ² , calculate the concentration of calcium ions in g L ⁻¹ formed by dissolving $CaC_2O_4 \cdot H_2O$ in water at 25 °C to give a saturated solution.		
		Answer:	

• The following initial rate data have been obtained for the gas phase reaction of nitrogen dioxide, $NO_2(g)$, and ozone, $O_3(g)$, at 300 K.

Marks 4

$$2NO_2(g) \ + \ O_3(g) \ \to \ N_2O_5(g) \ + \ O_2(g)$$

[NO ₂ (g)] M	[O ₃ (g)] M	Rate M s ⁻¹
0.65	0.80	2.61×10^4
1.10	0.80	4.40×10^4
1.10	1.60	8.80×10^{4}

What is the order of this reaction with respect to each reagent?

What is the rate constant of	of the reaction?		
		Answer:	
		Allswel.	

CHEM1102	2006-N-4	November 2006	22/08(a)

Compoun	ds of <i>d</i> -block elements are	frequently paramagn	etic. Using the box notation	n
o represe	nt atomic orbitals, account	for this property in c	ompounds of Cu ²⁺ .	

• Complete the following table.

Coordination Number of Species formed Formula Oxidation state of number of dupon dissolving in transition transition electrons water metal metal in the transition metal $Na_2[CoCl_4]$ $[Ni(NH_3)_5(H_2O)]SO_4$ $[Cr(en)_3]Br_3$

 $en = ethylenediamine = NH_2CH_2CH_2NH_2 \\$

6

Marks

CHEM1102 2006-N-5 November 2006 22/08(a)

• Solution A consists of a 0.25 M aqueous Calculate the pH of Solution A. The pK	s solution of hydrazoic acid, HN ₃ , at 25 °C. T _a of HN ₃ is 4.63.	Marks 8
	Answer:	
At 25 °C, 1.00 L of Solution B consists water. Calculate the pH of Solution B.	of 13.0 g of sodium azide (NaN ₃) dissolved in	
	Answer:	
Solution B (1.00 L) is poured into Soluti 25 °C to give Solution C. Calculate the	ion A (1.00 L) and allowed to equilibrate at pH of Solution C.	
	Answer:	
If you wanted to adjust the pH of Solution equal to 4.00, which component in the number need to increase in concentration?		

CHEM1102	2006-N-6	November 2006	22/08(a)	
• Define what is meant by an "allotrope". Give an example of a pair of allotropes involving oxygen and a pair <i>not</i> involving oxygen.				

Marks 7

• The structure of lignocaine, a local anaesthetic, is given below.

$$\left\langle \begin{array}{c} H \\ N \\ O \\ a \end{array} \right\rangle$$

Give the molecular formula of lignocaine.

Name the functional groups in lignocaine indicated by boxes "a" and "b".

a:	b :

Give the structure(s) of all organic products formed when lignocaine is treated with the following reagents. If no reaction occurs, write "NO REACTION".

cold HCl (1 M)	
, ,	
hot NaOH (4 M)	
hot HCl (4 M)	

• Draw the constitutional formula of the major organic product formed in each of the following reactions.

Marks 6

$$OH \qquad \frac{\text{CH}_3\text{COOH}}{\text{H}^{\oplus}/\text{ heat}}$$

$$\begin{array}{c}
OH \\
Cr_2O_7^{2\ominus}/H^{\oplus}
\end{array}$$

COOH
$$\frac{1. \text{LiAlH}_4}{2. \text{H}^{\oplus}/\text{H}_2\text{O}}$$

$$\begin{array}{c}
& Br_2 \\
\hline
& FeBr_3
\end{array}$$

ullet Propionaldehyde (propanal) is treated first with phenylmagnesium bromide in dry diethyl ether and then with dilute aqueous acid, to yield alcohol G.

2006-N-9

Marks 5

$$\mathbf{G}$$
 OH $\mathbf{CH_{2}CH_{3}}$

State whether G is obtained as the (R)-enantiomer, the (S)-enantiomer, a racemic mixture, or is achiral.

List below, the substituents on the stereogenic carbon atom in G, in decreasing priority (*i.e.* from highest to lowest priority), as determined by the sequence rules.

highest priority		lowest priority	
		1	

Draw the (R) enantiomer of G, showing the correct absolute stereochemistry.

• The incomplete proposed mechanism for the reaction of (*E*)-but-2-ene with aqueous acid is shown below. Complete the mechanism by adding curly arrows and relevant lone pairs to illustrate the bonding changes that take place.

What two-word description may be used for the name of this mechanism?

5

22/08(a)

• Devise a synthesis of 2-phenyl-2-propanol, starting from propene and bromobenzene. Note that your synthetic route will require more than one step from each starting material. Show clearly the reagents you would use and draw constitutional formulas for all intermediate compounds.

Marks 6

22/08(b) November 2006

CHEM1102 - CHEMISTRY 1B DATA SHEET

DATA SHEE

Physical constants

Avogadro constant, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

Faraday constant, $F = 96485 \text{ C mol}^{-1}$

Planck constant, $h = 6.626 \times 10^{-34} \,\mathrm{J s}$

Speed of light in vacuum, $c = 2.998 \times 10^8 \text{ m s}^{-1}$

Rydberg constant, $E_R = 2.18 \times 10^{-18} \text{ J}$

Boltzmann constant, $k_B = 1.381 \times 10^{-23} \text{ J K}^{-1}$

Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$

 $= 0.08206 L atm K^{-1} mol^{-1}$

Charge of electron, $e = 1.602 \times 10^{-19} \text{ C}$

Mass of electron, $m_e = 9.1094 \times 10^{-31} \text{ kg}$

Mass of proton, $m_p = 1.6726 \times 10^{-27} \text{ kg}$

Mass of neutron, $m_{\rm n} = 1.6749 \times 10^{-27} \, {\rm kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 $^{\circ}$ C = 24.5 L

Volume of 1 mole of ideal gas at 1 atm and 0 $^{\circ}$ C = 22.4 L

Density of water at 298 K = 0.997 g cm^{-3}

Conversion factors

$$1 \text{ atm} = 760 \text{ mmHg} = 101.3 \text{ kPa}$$

$$0 \, ^{\circ}\text{C} = 273 \, \text{K}$$

$$1 L = 10^{-3} m^3$$

$$1 \text{ Å} = 10^{-10} \text{ m}$$

$$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$$

$$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$$

$$1 \text{ Hz} = 1 \text{ s}^{-1}$$

Deci	mal fract	ions	$D\epsilon$	Decimal multiples						
Fraction	Prefix	Symbol	Multipl	e Prefix	Symbol					
10^{-3}	milli	m	10^3	kilo	k					
10^{-6}	micro	μ	10^{6}	mega	M					
10^{-9}	nano	n	109	giga	G					
10^{-12}	pico	p								

22/08(b) November 2006

CHEM1102 - CHEMISTRY 1B

Standard Reduction Potentials, E°

Reaction	E° / V
$\text{Co}^{3+}(\text{aq}) + \text{e}^{-} \rightarrow \text{Co}^{2+}(\text{aq})$	+1.82
$Ce^{4+}(aq) + e^{-} \rightarrow Ce^{3+}(aq)$	+1.72
$Au^{3+}(aq) + 3e^{-} \rightarrow Au(s)$	+1.50
$\text{Cl}_2 + 2\text{e}^- \rightarrow 2\text{Cl}^-(\text{aq})$	+1.36
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Br_2 + 2e^- \rightarrow 2Br^-(aq)$	+1.10
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$	+0.80
$Fe^{3+}(aq) + e^- \rightarrow Fe^{2+}(aq)$	+0.77
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53
$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2H^+(aq) + 2e^- \rightarrow H_2(g)$	0 (by definition)
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$	-0.04
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2\operatorname{e}^{-} \to \operatorname{Sn}(\operatorname{s})$	-0.14
$Ni^{2+}(aq) + 2e^- \rightarrow Ni(s)$	-0.24
~ ?+() ^ - ~ ()	
$Co^{2+}(aq) + 2e^{-} \rightarrow Co(s)$	-0.28
$Co^{2}(aq) + 2e \rightarrow Co(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$	-0.28 -0.44
$Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$	-0.44
$Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$	-0.44 -0.74
$Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$	-0.44 -0.74 -0.76
Fe ²⁺ (aq) + 2e ⁻ \rightarrow Fe(s) Cr ³⁺ (aq) + 3e ⁻ \rightarrow Cr(s) Zn ²⁺ (aq) + 2e ⁻ \rightarrow Zn(s) 2H ₂ O + 2e ⁻ \rightarrow H ₂ (g) + 2OH ⁻ (aq)	-0.44 -0.74 -0.76 -0.83
$Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$ $2H_{2}O + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$	-0.44 -0.74 -0.76 -0.83 -0.89
$Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$ $2H_{2}O + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-0.44 -0.74 -0.76 -0.83 -0.89 -1.68
$Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$ $2H_{2}O + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$ $Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-0.44 -0.74 -0.76 -0.83 -0.89 -1.68 -2.36
$Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$ $2H_2O + 2e^{-} \rightarrow H_2(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$ $Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$ $Na^{+}(aq) + e^{-} \rightarrow Na(s)$	-0.44 -0.74 -0.76 -0.83 -0.89 -1.68 -2.36 -2.71

CHEM1102 - CHEMISTRY 1B

Useful formulas

Quantum Chemistry	Electrochemistry
$E = hv = hc/\lambda$	$\Delta G^{\circ} = -nFE^{\circ}$
$\lambda = h/mv$	$Moles\ of\ e^- = It/F$
$4.5k_{\rm B}T = hc/\lambda$	$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$
$E = Z^2 E_{\rm R}(1/n^2)$	$= E^{\circ} - (RT/nF) \times \ln Q$
$\Delta x \cdot \Delta(mv) \ge h/4\pi$	$E^{\circ} = (RT/nF) \times 2.303 \log K$
$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	$= (RT/nF) \times \ln K$
	$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$
Acids and Bases	Gas Laws
$pK_{w} = pH + pOH = 14.00$	PV = nRT
$pK_{\rm w} = pK_{\rm a} + pK_{\rm b} = 14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$
$pH = pK_a + \log\{[A^-] / [HA]\}$	
Colligative properties	Kinetics
$\pi = cRT$	$t_{1/2} = \ln 2/k$
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$k = Ae^{-E_{a}/RT}$
p = kc	$ ln[A] = ln[A]_{o} - kt $
$\Delta T_{ m f} = K_{ m f} m$	$\ln \frac{k_2}{k_2} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$
$\Delta T_{\rm b} = K_{\rm b} m$	$k_1 \qquad R T_1 \qquad T_2$
Radioactivity	Thermodynamics & Equilibrium
$t_{1/2} = \ln 2/\lambda$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$
$A = \lambda N$	$\Delta G = \Delta G^{\circ} + RT \ln Q$
$\ln(N_0/N_t) = \lambda t$	$\Delta G^{\circ} = -RT \ln K$
14 C age = 8033 ln(A_0/A_t)	$K_{\rm p} = K_{\rm c} (RT)^{\Delta n}$
Polymers	Mathematics
$R_{ m g}=\sqrt{rac{nl_0^2}{6}}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
	$ \ln x = 2.303 \log x $

PERIODIC TABLE OF THE ELEMENTS

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1																	2
HYDROGEN H																	HELIUM He
1.008		_															4.003
3	4											5	6	7	8	9	10
Lithium	Beryllium Be											BORON B	CARBON	NITROGEN N	OXYGEN	FLUORINE F	Neon Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
SODIUM	MAGNESIUM											ALUMINIUM	SILICON	PHOSPHORUS	SULFUR	CHLORINE	ARGON
Na	Mg											Al	Si	P	S	Cl	Ar
22.99	24.31		· · · · · · · · · · · · · · · · · · ·									26.98	28.09	30.97	32.07	35.45	39.95
19 POTASSIUM	20 CALCIUM	21 scandium	22 TITANIUM	23 Vanadium	24 chromium	25 manganese	26 IRON	27	28 NICKEL	29 COPPER	30 zinc	31	32 GERMANIUM	33 ARSENIC	34 SELENIUM	35 BROMINE	36 KRYPTON
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
RUBIDIUM	STRONTIUM	YTTRIUM	ZIRCONIUM	NIOBIUM	MOLYBDENUM	TECHNETIUM	RUTHENIUM	RHODIUM	PALLADIUM	SILVER	CADMIUM	INDIUM	TIN	ANTIMONY	TELLURIUM	IODINE	XENON
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98.91]	101.07	102.91	106.4	107.87	112.40	114.82	118.69	121.75	127.60	126.90	131.30
55 CAESIUM	56 BARIUM	57-71	72 HAFNIUM	73	74 TUNGSTEN	75 RHENIUM	76 OSMIUM	77 IRIDIUM	78 PLATINUM	79	80 mercury	81 THALLIUM	82 LEAD	83 BISMUTH	84 POLONIUM	85 astatine	86 RADON
Cs	Ba		Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.91	137.34		178.49	180.95	183.85	186.2	190.2	192.22	195.09	196.97	200.59	204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
87	88	89-103	104	105	106	107	108	109									
Francium	RADIUM		RUTHERFORDIUM Rf	Db Db	SEABORGIUM Sg	Bh	HASSIUM HS	MEITNERIUM Mt									
[223.0]	[226.0]		[261]	[262]	[266]	[262]	[265]	[266]									
[223.0]	[220.0]		[201]	[202]	[200]	[202]	[200]	[200]	J								

LANTHANIDES	57 LANTHANUM La	58 CERIUM Ce	59 PRASEODYMIUM Pr	60 NEODYMIUM Nd	61 PROMETHIUM Pm	62 Samarium Sm	63 _{еигоріим} Eu	64 gadolinium Gd	65 теквіим Тb	66 Dysprosium Dy	67 ногмим Но	68 Er	69 _{тниши} Тт	70 ytterbium $\mathbf{Y}\mathbf{b}$	71 Lu Lu
	138.91	140.12	140.91	144.24	[144.9]	150.4	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
ACTINIDES	89 actinium	90 THORIUM	91 PROTACTINIUM	92 uranium	93 NEPTUNIUM	94 PLUTONIUM	95 AMERICIUM	96 curium	97 BERKELLIUM	98 CALIFORNIUM	99 EINSTEINIUM	100 FERMIUM	101 mendelevium	102 NOBELIUM	103 LAWRENCIUM
	Ac	Th	Pa	\mathbf{U}	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	[227.0]	232.04	[231.0]	238.03	[237.0]	[239.1]	[243.1]	[247.1]	[247.1]	[252.1]	[252.1]	[257.1]	[256.1]	[259.1]	[260.1]