Topics in the November 2013 Exam Paper for CHEM1102

Click on the links for resources on each topic.

2013-N-2:

- Weak Acids and Bases
- Calculations Involving pKa

2013-N-3:

- Solubility Equilibrium
- Coordination Chemistry

2013-N-4:

- Physical States and Phase Diagrams
- Intermolecular Forces and Phase Behaviour

2013-N-5:

• Coordination Chemistry

2013-N-6:

- Solubility Equilibrium
- Hydrolysis of Metal Ions
- Coordination Chemistry

2013-N-7:

- Kinetics
- Kinetics Influences

2013-N-8:

- Alcohols
- Aldehydes and Ketones
- Alkenes
- Organic Halogen Compounds
- Carboxylic Acids and Derivatives

2013-N-9:

• Synthetic Strategies

2013-N-10:

• Stereochemistry

2013-N-11:

- Alkenes
- Synthetic Strategies

2013-N-12:

- Carboxylic Acids and Derivatives
- Alcohols

2013-N-13:

Carboxylic Acids and Derivatives

2013-N-14:

- Alkenes
- Aldehydes and Ketones

2208(a)

THE UNIVERSITY OF SYDNEY

<u>CHEMISTRY 1B - CHEM1102</u> <u>SECOND SEMESTER EXAMINATION</u>

CONFIDENTIAL

NOVEMBER 2013

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY	SID	
NAME	NUMBER	
OTHER	TABLE	
NAMES	NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attemp ted. There are 21 pages of examinable material.
- Complete the written section of the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a •.
- Only non-programmable, Universityapproved calculators may be used.
- Students are warned that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Pages 11 and 24 are for rough working only.

OFFICIAL USE ONLY

Multiple choice section			
		Marks	
Pages	Max	Gained	
29	29		

Short answer section

	Marks			
Page	Max	Gaine	d	Marker
10	7			
12	8			
13	7			
14	3			
15	7			
16	5			
17	6			
18	7			
19	7			
20	4			
21	5			
22	3			
23	2			
Total	71			

• The p <i>K</i> _a of formic acid, HCO ₂ H, is 3.77. formic acid?	What is the pH of a 0.20 M solution of	Marks 7
	pH =	_
Give the equation for the reaction of form	nic acid with solid sodium hydroxide.	
Calculate the ratio of formate ion / formi	c acid required to give a buffer of pH 4.00.	_
	Answer	
What amount (in mol) of sodium hydroxi	ide must be added to 100.0 mL of	_
$0.20 \text{ M HCO}_2\text{H to prepare a solution buf}$	fered at pH 4.00?	
		_
	Answer:	

[CoCl(NH₃)₅]SO₄

 $K_4[Fe(CN)_6]$

 $[Ag(CN)_2]^-$

 • Give the equation for the dissolution of hydroxyapatite, Ca₅(PO₄)₃(OH), in water.
 Marks 2

 What is the formula for the solubility product constant for hydroxyapatite?
 6

 • Complete the following table.
 6

 Formula
 Geometry of complex
 Ligand donor atom(s)

 [Zn(OH)₄]²⁻
 6

Select any complex ion from the above table and state whether it is paramagnetic, diamagnetic or neither. Explain your reasoning.

• A phase diagram of a pure compound has a triple point at 13 °C and 205 mmHg, a normal melting point at 17 °C, and a normal boiling point at 87 °C. Draw a phase diagram for this compound. Label all the different regions of the phase diagram.		
Indicate whether each of the following statements regarding this compound false.	ind is true or	
The density of the solid is greater than that of the liquid.	True / False	
If the pressure is reduced from 835 mmHg to 85 mmHg at a constant temperature of 11 °C, sublimation occurs.	True / False	
At a constant pressure of 835 mmHg, evaporation occurs if the temperature is raised from 13 °C to 81 °C.	True / False	

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

 Which of the following complexes is/are chiral? Explain your reasoning. Use diagrams where necessary. acetylacetonate ion = CH₃COCHCOCH₃⁻ ethylenediamine = NH₂CH₂CH₂NH₂ 	Marks 3
tris(acetylacetonato)chromium(III)	
<i>trans</i> -bis(ethylenediamine)difluoridochromium(III) chloride	
acetylacetonatobis(ethylenediamine)chromium(III) iodide	

• What is the solubility of Cu(OH) ₂ in mol L ⁻¹ ? K_{sp} (Cu(OH) ₂) is 1.6×10^{-19} at 25 °C.	Mark 7
Answer:	_
The overall formation constant for $[Cu(NH_3)_4]^{2+}$ is 1.0×10^{13} . Write the equation for the reaction of Cu ²⁺ ions with excess ammonia solution.	
Calculate the value of the equilibrium constant for the following reaction.	
$Cu(OH)_2(s) + 4NH_3(aq) \qquad [Cu(NH_3)_4]^{2+}(aq) + 2OH^-(aq)$	
	_
Answer:	-
Would you expect Cu(OH) ₂ (s) to dissolve in 1 M NH ₃ solution? Briefly explain your answer.	

• The following data were obtained for the iodide-catalysed decomposition of hydrogen peroxide, H₂O₂.

Experiment	[I ⁻](M)	$\left[H_2O_2\right](M)$	Initial rate(M s ⁻¹)
1	0.375	0	0
2	0.375	0.235	0.000324
3	0.375	0.470	0.000657
4	0.375	0.705	0.001024
5	0.375	0.940	0.001487
6	0	0.948	0
7	0.050	0.948	0.00045
8	0.100	0.948	0.00095
9	0.150	0.948	0.00140
10	0.200	0.948	0.00193

Determine the rate law from these data.

Use the data from Experiment 10 to calculate the rate constant for this reaction.

k =

Iodide ion is used as a catalyst in this reaction. What is the role of a catalyst in a chemical reaction?

Complete the following table.			
STARTING MATERIAL	REAGENTS/ CONDITIONS	CONSTITUTIONAL FORMULA(S) OF MAJOR ORGANIC PRODUCT(S)	
		ОН	
	HI		
Br	hot conc. KOH in ethanol		
	$\operatorname{Cr_2O_7}^{2\Theta}/\operatorname{H}^{\oplus}$		
ОН			
MgBr	1. CO ₂ 2. H [⊕] / H ₂ O		

Page Total:

Marks • Show clearly the reagents you would use to carry out the following chemical conversion. More than one step is required. Give the structures of any intermediate 7 compounds formed. 0 Ο O O ЮH Br

Marks • Devise a way to convert alkene **C** to alkene **D** using hydrogen bromide (HBr) as one 4 of the reagents. Provide any other reagents you might need. If any of the steps you use could form two products, explain whether there is any selectivity and why. D С

Page Total:

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

•	Hydrogen chloride, HCl, reacts with the compound $CH_3CH=C=O$ in an electrophilic addition reaction. Use your knowledge of the mechanism of electrophilic addition to a C=C double bond to predict the major product of this reaction. Explain your reasoning.	Marks 2

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

Page Total:

CHEM1102 - CHEMISTRY 1B

DATA SHEET

 $Physical \ constants$ Avogadro constant, $N_{\rm A} = 6.022 \times 10^{23} \ {\rm mol}^{-1}$ Faraday constant, $F = 96485 \ {\rm C} \ {\rm mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \ {\rm J} \ {\rm s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \ {\rm m} \ {\rm s}^{-1}$ Rydberg constant, $E_{\rm R} = 2.18 \times 10^{-18} \ {\rm J}$ Boltzmann constant, $k_{\rm B} = 1.381 \times 10^{-23} \ {\rm J} \ {\rm K}^{-1}$ Permittivity of a vacuum, $\epsilon_0 = 8.854 \times 10^{-12} \ {\rm C}^2 \ {\rm J}^{-1} \ {\rm m}^{-1}$ Gas constant, $R = 8.314 \ {\rm J} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ $= 0.08206 \ {\rm L} \ {\rm atm} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \ {\rm C}$ Mass of electron, $m_{\rm e} = 9.1094 \times 10^{-31} \ {\rm kg}$ Mass of proton, $m_{\rm p} = 1.6726 \times 10^{-27} \ {\rm kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors	
1 atm = 760 mmHg = 101.3 kPa	$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$
0 °C = 273 K	$1 \text{ Hz} = 1 \text{ s}^{-1}$
$1 L = 10^{-3} m^3$	1 tonne = 10^3 kg
$1 \text{ Å} = 10^{-10} \text{ m}$	$1 \text{ W} = 1 \text{ J s}^{-1}$
$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$	

Decimal fractions			Deci	Decimal multiples			
Fraction Prefix Symb		Symbol	Multiple	Prefix	Symbol		
10^{-3}	milli	m	10^{3}	kilo	k		
10^{-6}	micro	μ	10^{6}	mega	Μ		
10^{-9}	nano	n	10 ⁹	giga	G		
10^{-12}	pico	р	10^{12}	tera	Т		

CHEM1102 - CHEMISTRY 1B

Standard Reduction Potentials, E°	
Reaction	E° / V
$\operatorname{Co}^{3+}(\operatorname{aq}) + e^{-} \rightarrow \operatorname{Co}^{2+}(\operatorname{aq})$	+1.82
$\operatorname{Ce}^{4+}(\operatorname{aq}) + \operatorname{e}^{-} \rightarrow \operatorname{Ce}^{3+}(\operatorname{aq})$	+1.72
$MnO_4^{-}(aq) + 8H^{+}(aq) + 5e^{-} \rightarrow Mn^{2+}(aq) + 4H_2O$	+1.51
$\operatorname{Au}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Au}(s)$	+1.50
$Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Pt^{2+}(aq) + 2e^{-} \rightarrow Pt(s)$	+1.18
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96
$NO_3^{-}(aq) + 4H^+(aq) + 3e^- \rightarrow NO(g) + 2H_2O$	+0.96
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80
$\mathrm{Fe}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})$	+0.77
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53
$\operatorname{Cu}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cu}(s)$	+0.34
$BiO^{+}(aq) + 2H^{+}(aq) + 3e^{-} \rightarrow Bi(s) + H_2O$	+0.32
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2\mathrm{H}^{+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{g})$	0 (by definition)
$\operatorname{Fe}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Fe}(s)$	-0.04
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.24
$Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$	-0.40
$\operatorname{Fe}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Fe}(s)$	-0.44
$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Cr}(s)$	-0.74
$\operatorname{Zn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Zn}(s)$	-0.76
$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83
$\operatorname{Cr}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cr}(s)$	-0.89
$\mathrm{Al}^{3+}(\mathrm{aq}) + 3\mathrm{e}^{-} \rightarrow \mathrm{Al}(\mathrm{s})$	-1.68
$\mathrm{Sc}^{3+}(\mathrm{aq}) + 3\mathrm{e}^{-} \rightarrow \mathrm{Sc}(\mathrm{s})$	-2.09
$Mg^{2+}(aq) + 2e^- \rightarrow Mg(s)$	-2.36
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71
$Ca^{2+}(aq) + 2e^{-} \rightarrow Ca(s)$	-2.87
$Li^+(aq) + e^- \rightarrow Li(s)$	-3.04

Useful formulas								
Quantum Chemistry	Electrochemistry							
$E = h v = h c / \lambda$	$\Delta G^{\circ} = -nFE^{\circ}$							
$\lambda = h/mv$	Moles of $e^- = It/F$							
$E = -Z^2 E_{\rm R}(1/n^2)$	$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$							
$\Delta x \cdot \Delta(mv) \ge h/4\pi$	$= E^{\circ} - (RT/nF) \times \ln Q$							
$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	$E^{\circ} = (RT/nF) \times 2.303 \log K$							
$T \lambda = 2.898 \times 10^6 \text{ K nm}$	$= (RT/nF) \times \ln K$							
	$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$							
Acids and Bases	Gas Laws							
$pH = -log[H^+]$	PV = nRT							
$pK_{\rm w} = pH + pOH = 14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$							
$pK_{\rm w} = pK_{\rm a} + pK_{\rm b} = 14.00$	$E_{\rm k} = \frac{1}{2}mv^2$							
$pH = pK_a + \log\{[A^-] / [HA]\}$								
Radioactivity	Kinetics							
$t_{1/2} = \ln 2/\lambda$	$t_{l/2} = \ln 2/k$							
$A = \lambda N$	$k = A e^{-Ea/RT}$							
$\ln(N_0/N_t) = \lambda t$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_{\rm o} - kt$							
14 C age = 8033 ln(A_0/A_t) years	$\ln \frac{k_{2}}{k_{1}} = \frac{E_{a}}{R} \left(\frac{1}{T_{1}} - \frac{1}{T_{2}} \right)$							
Colligative Properties & Solutions	Thermodynamics & Equilibrium							
$\Pi = cRT$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$							
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$\Delta G = \Delta G^{\circ} + RT \ln Q$							
c = kp	$\Delta G^{\circ} = -RT \ln K$							
$\Delta T_{ m f} = K_{ m f} m$	$\Delta_{\rm univ}S^\circ = R\ln\!K$							
$\Delta T_{\rm b} = K_{\rm b} m$	$K_{\rm p} = K_{\rm c} \left(RT \right)^{\Delta n}$							
Miscellaneous	Mathematics							
$A = -\log \frac{I}{I_0}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$							
$A = \varepsilon c l$	$\ln x = 2.303 \log x$							
$E = -A \frac{e^2}{N_A}$	Area of circle = πr^2							
$4\pi\varepsilon_0 r$	Surface area of sphere = $4\pi r^2$							

CHEM1102 - CHEMISTRY 1B

1	2	3	4	5	6	7	8	9	10	11	1	2	13	14	15	16	17	18
1 нуdrogen Н 1.008																		2 нешим Не 4.003
3	4												5	6	7	8	9	10
Linnom	BERYLLIOM												BORON	CARBON	NIROGEN	OXIGEN	F	Ne
6.941	9.012												10.81	12.01	14.01	16.00	19.00	20.18
11	12												13	14	15	16	17	18
SODIUM Na	MAGNESIUM Mo												ALUMINIUM	SILICON	PHOSPHORUS P	SULFUR	CI	ARGON
22.99	24.31												26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	3	0	31	32	33	34	35	36
POTASSIUM		SCANDIUM	TITANIUM Ti	VANADIUM V	CHROMIUM	MANGANESE	IRON Fe	COBALT	NICKEL Ni		ZIN Z	₀c n	GALLIUM	GERMANIUM	ARSENIC A C	SELENIUM	BROMINE Rr	KRYPTON Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	5 65.	11 39	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	4	8	49	50	51	52	53	54
	STRONTIUM	YTTRIUM V	ZIRCONIUM	NIOBIUM	MOLYBDENUM	TECHNETIUM	RUTHENIUM D11	RHODIUM Dh	PALLADIUM DJ	SILVER		пим d	INDIUM	TIN Sn	ANTIMONY	TELLURIUM	IODINE	XENON X O
KD 85.47	87.62	∎ 88.91	91.22	92.91	95.94	[98.91]	Ku 101.07	KII 102.91	106.4	107.8	7 112	u .40	114.82	118.69	121.75	127.60	∎ 126.90	A C 131.30
55	56	57-71	72	73	74	75	76	77	78	79	8	0	81	82	83	84	85	86
CAESIUM	BARIUM		HAFNIUM TTP	TANTALUM	TUNGSTEN	RHENIUM		IRIDIUM	PLATINUM	GOLD	MERO	CURY	THALLIUM		BISMUTH	POLONIUM		RADON
US	Da 137 34		ПI 178 49	180.95	VV 183.85	186 2	US 190.2	192 22	195.09	Au 196.9	7 200	g 59	204 37	207.2	DI 208 98	PO [210.0]	AL [210.0]	KII [222.0]
87	88	89-103	110.45	100.55	105.65	100.2	108	109	110	111	11	2	204.37	114	200.90	116	[210.0]	[222.0]
FRANCIUM	RADIUM	07 100	RUTHERFORDI	JM DUBNIUM	SEABORGIUM	BOHRIUM	HASSIUM	MEITNERIUM	DARMSTADTIUM	ROENTGEN	UM COPERN	TCIUM		FLEROVIUM				
Fr [223.0]	Ka		KI	DD	Sg	BN	HS [265]	I VII [266]	DS	Kg		n 231		[280]		LV [203]		
[223.0]	[220.0]		[201]	[202]	[200]	[202]	[205]	[200]	[271]	[272]	[[20	5]		[207]		[275]		
	5	7	58	59	60	61	62	63	64	1	65		66	67	68	69	70	71
LANTHANO	IDS LANTE	IANUM	CERIUM	PRASEODYMIUM	NEODYMIUM	PROMETHIUM	SAMARIUM	EUROPIUN	M GADOLI	NIUM	TERBIUM	DYS	PROSIUM	HOLMIUM	ERBIUM	THULIUM	YTTERBIUM	LUTETIUM
	L	a	Ce	Pr	Nd	Pm	Sm	Eu	6 157	a 25	I D 158.02	16	Dy	H0	Er 167.26	168.03	Y b	Lu
	130	Q	90	01	92	Q3	9/	95	0 137. Q	5	97	10	98	04.93 00	107.20	100.93	102	1/4.9/
ACTINOID	S ACTI	NIUM T	HORIUM	PROTACTINIUM		NEPTUNIUM		AMERICIU	M CURI	UM B	J I ERKELLIUM	CALI	FORNIUM	JJ EINSTEINIUM	FERMIUM	MENDELEVIUM	NOBELIUM	LAWRENCIUM
	A	c	Th	Pa	U	Np	Pu	Am		n	Bk		Cf	Es	Fm	Md	No	Lr
	[22]	7.0] [2	32.04	[231.0]	238.03	[237.0]	[239.1]	[243.1	LJ [247	'.1] [[[247.1]	[2:	52.1]	[252.1]	[257.1]	[256.1]	[259.1]	[260.1]

PERIODIC TABLE OF THE ELEMENTS