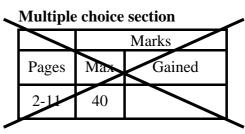
22/14(a) The University of Sydney

<u>CHEM1108 - CHEMISTRY 1 LIFE SCIENCES A</u> <u>FIRST SEMESTER EXAMINATION</u>

CONFIDENTIAL

JUNE 2007

TIME ALLOWED: THREE HOURS


GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY NAME	SID NUMBER	
OTHER NAMES	TABLE NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 17 pages of examinable material.
- Complete the examination paper in **INK**.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a •.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution. Logarithms may also be used.
- Numerical values required for any question as well as a Periodic Table are printed on a separate data sheet.
- Pages 18 and 20 are for rough work only.

OFFICIAL USE ONLY

Short answer section

		Marks		
Page	Max	Gained		Marker
12	10			
13	7			
14	6			
15	11			
16	8			
17	9			
19	9			
Total	60			
Check Total				

Marks • Complete the following table. Give, as required, the formula, the systematic name, 5 the oxidation number of the underlined atom and, where indicated, the number of d electrons for the element in this oxidation state. Number of Oxidation Formula Systematic name number *d* electrons $\underline{C}O_2$ Na₂CrO₄ FeCl₃·3H₂O potassium sulfate 3 • Draw the Lewis structures, showing all valence electrons for the following species. $CH_3^ CH_3^+$ Indicate which of these species you expect will be more stable and explain why. • Desferal is a siderophore-based drug that is used in humans to treat iron-overload. One 2 molecule of Desferal (molecular formula: $C_{25}H_{48}O_8N_6$) can bind one Fe³⁺ ion. A patient with an iron-overload disease had an excess of 5.34×10^{-4} M Fe³⁺ in her bloodstream. Assuming the patient had a total blood volume of 4.84 L, what mass of Desferal would be required to complex all of the excess Fe^{3+} ?

Answer:

• Glycine, NH ₂ CH ₂ COOH, the simplest of all naturally occurring amino acids, has a melting point of 292 °C. The pK_a of the acid group is 2.35 and the pK_a associated with the amino group is 9.78. Draw a structure that indicates the charges on the molecule at the physiological pH of 7.4.						
Describe the hybridisation of the two carbon atoms and the nitrogen atom in gly and the geometry of the atoms surrounding these three atoms.	ycine					
Glycine has an unusually high melting point for a small molecule. Suggest a refor this.	ason					
• Many gases are available for use in compressed gas cylinders, in which they are stored at high pressures. Calculate the mass of oxygen gas that can be stored at 20 °C and 170 atm pressure in a cylinder with a volume of 60.0 L.						
Answer:						

CHEMI108	2007- J -4	June 2007	22/14(a)					
	• If 20.0 mL of a 0.100 M solution of sodium phosphate is mixed with 25.0 mL of a 0.200 M solution of zinc chloride, what mass of zinc phosphate will precipitate from the reaction?							
What is the final con	Answer: centration of zinc ions in solution after	er the above reaction?						
	Answer:							
What is the final con	centration of sodium ions in solution	after the above reaction?						

Answer:

Complete the following table. material or major product whe		e the name of the starting	Mar 11
STARTING MATERIAL	REAGENTS/ CONDITIONS	CONSTITUTIONAL FORMULA(S) OF MAJOR ORGANIC PRODUCT(S)	
CH ₃ CH ₂ CHO		CH ₃ CH ₂ CH ₂ OH	
CH ₃ CH=CHCH ₃		CH ₃ CH ₂ CHCH ₃ OH	
		Name:	
ОН	1. Na metal 2. CH ₃ CH ₂ Br		
ОН			
I		Name:	
$CH_3 = C = OCH_2CH_2CH_3$	3 M NaOH / heat		
Name:			-
$CH_{3} CH_{3} $	excess CH ₃ CH ₂ NH ₂		

The structure of testosterone, an important male hormone, is shown below.					
0	testosterone				
Give the molecular formula of testosteror	ne.				
Identify the functional groups present in	testosterone.				
How many stereogenic (chiral) centres ar	re there in testosterone?				
Draw the constitutional formula of the pr with the following reagents.	oduct formed when testosterone is treated				
excess methanol / HCl	LiAlH ₄ in dry ether; then H^{\oplus}/H_2O				
concentrated H ₂ SO ₄ / heat	H ₂ / Pd catalyst				

• The stucture of D-idose is shown below. Draw the Fischer projection of L-idose in the space provided.

L-idose

CHO

Marks

9

D-idose	НО—— Н Н—— ОН НО—— Н Н—— ОН			
D-Idose is in equilibr projection of these tw		pyranose form	s. Give the H	laworth
Give the products obt	ained when D-idose	e is treated with	the following	g reagents.
methanol / H [⊕]	[Ag(NH ₃) ₂] [⊕] /(OH [⊖] solution	1. NaBH4	2. dilute acid
Draw the Haworth str yields D-idose as the		g disaccharide,	which, on aci	d hydrolysis,

Marks • The constitutional formula of aspartame, a non-nutritive artificial sweetener, is shown 9 below. $\begin{array}{c} O\\ H_2N-CH-C-N-CH-COOCH_3\\ I\\ CH_2 \\ H\\ COOH \end{array}$ Hydrolysis of aspartame yields the N-terminal amino acid, aspartic acid (Asp) and the C-terminal amino acid, phenylalanine (Phe), together with methanol. Give the structures of the amino acids, Asp and Phe, as the zwitterions. Phe Asp Give the products when phenylalanine is treated with the following reagents. excess methanol / HCl (CH₃CO)₂O / dilute NaOH Give the constitutional formula of the dipeptide Phe-Asp at the following pH values. pH 1.0 pH 12.0

CHEM1108 - CHEMISTRY 1 LIFE SCIENCES A

DATA SHEET

 $Physical \ constants$ Avogadro constant, $N_{\rm A} = 6.022 \times 10^{23} \ {\rm mol}^{-1}$ Faraday constant, $F = 96485 \ {\rm C} \ {\rm mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \ {\rm J} \ {\rm s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \ {\rm m} \ {\rm s}^{-1}$ Rydberg constant, $E_{\rm R} = 2.18 \times 10^{-18} \ {\rm J}$ Boltzmann constant, $k_{\rm B} = 1.381 \times 10^{-23} \ {\rm J} \ {\rm K}^{-1}$ Permittivity of a vacuum, $\epsilon_0 = 8.854 \times 10^{-12} \ {\rm C}^2 \ {\rm J}^{-1} \ {\rm m}^{-1}$ Gas constant, $R = 8.314 \ {\rm J} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ $= 0.08206 \ {\rm L} \ {\rm atm} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \ {\rm C}$ Mass of electron, $m_{\rm e} = 9.1094 \times 10^{-31} \ {\rm kg}$ Mass of proton, $m_{\rm p} = 1.6726 \times 10^{-27} \ {\rm kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors

1 atm = 760 mmHg = 101.3 kPa	$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$
0 °C = 273 K	$1 \text{ Hz} = 1 \text{ s}^{-1}$
$1 L = 10^{-3} m^3$	1 tonne = 10^3 kg
$1 \text{ Å} = 10^{-10} \text{ m}$	$1 \text{ W} = 1 \text{ J s}^{-1}$
$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$	

Deci	mal fract	ions	Deci	Decimal multiples				
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol			
10^{-3}	milli	m	10^{3}	kilo	k			
10^{-6}	micro	μ	10^{6}	mega	Μ			
10^{-9}	nano	n	10^{9}	giga	G			
10^{-12}	pico	р						

CHEM1108 - CHEMISTRY 1 LIFE SCIENCES A

Standard Reduction Potentials, E°	
Reaction	E° / V
$\mathrm{Co}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})$	+1.82
$Ce^{4+}(aq) + e^- \rightarrow Ce^{3+}(aq)$	+1.72
$MnO_{4}^{-}(aq) + 8H^{+}(aq) + 5e^{-} \rightarrow Mn^{2+}(aq) + 4H_{2}O$	+1.51
$Au^{3+}(aq) + 3e^{-} \rightarrow Au(s)$	+1.50
$Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Pt^{2+}(aq) + 2e^{-} \rightarrow Pt(s)$	+1.18
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80
$\operatorname{Fe}^{3+}(\operatorname{aq}) + e^{-} \rightarrow \operatorname{Fe}^{2+}(\operatorname{aq})$	+0.77
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53
$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2H^+(aq) + 2e^- \rightarrow H_2(g)$	0 (by definition)
$\operatorname{Fe}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Fe}(s)$	-0.04
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.24
$Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$	-0.40
$Fe^{2+}(aq) + 2e^- \rightarrow Fe(s)$	-0.44
$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Cr}(s)$	-0.74
$\operatorname{Zn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Zn}(s)$	-0.76
$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83
$\operatorname{Cr}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cr}(s)$	-0.89
$\mathrm{Al}^{3+}(\mathrm{aq}) + 3\mathrm{e}^{-} \rightarrow \mathrm{Al}(\mathrm{s})$	-1.68
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2.36
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71
$Ca^{2+}(aq) + 2e^{-} \rightarrow Ca(s)$	-2.87
$Li^+(aq) + e^- \rightarrow Li(s)$	-3.04

CHEM1108 - CHEMISTRY 1 LIFE SCIENCES A

Useful formulas

Quantum Chemistry	Electrochemistry
$E = hv = hc/\lambda$	$\Delta G^{\circ} = -nFE^{\circ}$
$\begin{aligned} \lambda &= h/mv \end{aligned}$	$Moles of e^- = It/F$
$4.5k_{\rm B}T = hc/\lambda$	$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$
$E = -Z^2 E_{\rm R}(1/n^2)$	$= E^{\circ} - (RT/nF) \times \ln Q$
	$E^{\circ} = (RT/nF) \times 2.303 \log K$
$\Delta x \cdot \Delta(mv) \ge h/4\pi$	$= (RT/nF) \times \ln K$
$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	
	$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$
Acids and Bases	Gas Laws
$pK_{\rm w} = pH + pOH = 14.00$	PV = nRT
$\mathbf{p}K_{\mathrm{w}} = \mathbf{p}K_{\mathrm{a}} + \mathbf{p}K_{\mathrm{b}} = 14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$
$pH = pK_a + \log\{[A^-] / [HA]\}$	
Colligative properties	Kinetics
$\pi = cRT$	$t_{l/2} = \ln 2/k$
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$k = A e^{-Ea/RT}$
$\mathbf{p} = k\mathbf{c}$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_{\rm o} - kt$
$\Delta T_{\rm f} = K_{\rm f} m$	$\ln\frac{k_2}{k} = \frac{E_a}{R} \left(\frac{1}{T} - \frac{1}{T}\right)$
$\Delta T_{\rm b} = K_{\rm b} m$	$k_1 = R T_1 T_2'$
Radioactivity	Thermodynamics & Equilibrium
$t_{l'_2} = \ln 2/\lambda$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$
$A = \lambda N$	$\Delta G = \Delta G^{\circ} + RT \ln Q$
$\ln(N_0/N_t) = \lambda t$	$\Delta G^{\circ} = -RT \ln K$
14 C age = 8033 ln(A_0/A_t) years	$K_{\rm p} = K_{\rm c} \ (RT)^{\Delta n}$
Miscellaneous	Mathematics
$A = -\log 10 \frac{I}{I_0}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
$A = \varepsilon c l$	$\ln x = 2.303 \log x$
$E = -A \frac{e^2}{4\pi\varepsilon_0 r} N_{\rm A}$	

June 2007

CHEM1108

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 Hydrogen H 1.008	-	U		C	Ū	·	U	-	10						10		2 нешим Не 4.003
3 LITHUM Li 6.941	4 Beryllium Be 9.012											5 вогол В 10.81	6 саявол С 12.01	7 Nitrogen N 14.01	8 0xygen 0 16.00	9 ^{FLUORINE} F 19.00	10 меом Ne 20.18
11 sodium Na 22.99	12 MAGNESIUM Mg 24.31											13 ALUMINIUM Al 26.98	14 silicon Si 28.09	15 рнозрногиз Р 30.97	16 SULFUR S 32.07	17 CHLORINE Cl 35.45	18 ARGON Ar 39.95
19 ротахвим К 39.10	20 calcium Ca 40.08	21 scandium Sc 44.96	22 TITANI T i 47.8	um vanadit I V	Cr	25 manganese Mn 54.94	26 IRON Fe 55.85	27 cobalt Co 58.93	28 NICKEL Ni 58.69	29 соррек Cu 63.55	30 ^{ZINC} Zn 65.39	31 GALLIUM Ga 69.72	32 GERMANIUM Ge 72.59	33	34 selenium Se 78.96	35 вкоміне Вг 79.90	36 KRYPTON Kr 83.80
37 RUBIDIUM Rb 85.47	38 strontium Sr 87.62	39 ^{yttrium} Y 88.91	40 zircon Zi 91.2) 41 им мовил с Nb	42	43 тесниетим Tc [98.91]	44 RUTHENIUM Ru 101.07	45 _{кнодіим} Rh 102.91	46 Palladium Pd 106.4	47 SILVER Ag 107.87	48 садмиим Сd 112.40	49 INDIUM In 114.82	50 ™ Sn 118.69	51 ANTIMONY Sb 121.75	52 Tellurium Te 127.60	53 IODINE I 126.90	54 xenon Xe 131.30
55 CAESIUM Cs 132.91	56 ваким Ва 137.34	57-71	72 нарын Нарын 178	2 73 TANTALI f Ta	M 74 TUNGSTEN W	75 кнемим Re 186.2	76 озмим ОS 190.2	77 IRIDIUM IP 192.22	78 PLATINUM Pt 195.09	79 GOLD Au 196.97	80 MERCURY Hg 200.59	81 THALLIUM Tl 204.37	82 LEAD Pb 207.2	83 візмитн Ві 208.98	84 POLONIUM PO [210.0]	85 ASTATINE At [210.0]	86 RADON Rn [222.0]
87 FRANCIUM Fr [223.0]	88 RADIUM Ra [226.0]	89-103	104 RUTHERFO R 1 [26]	4 105 rdium dubniu f Db	i 106 seaborgium Sg	107 вонким Вh [262]	1)0:2 108 назвим Hs [265]	109 ментлеким Мt [266]	110 DARMSTADTIUM DS [271]	1111 поентденим Rg [272]	200.07	20.007			[2:00]		[]
LANTHANID	ES 57 LANTHA L2 138.	NUM CE	58 RIUM Ce 0.12	59 praseodymium Pr 140.91	60 _{NEODYMIUM} Nd 144.24	61 promethium Pm [144.9]	62 samarium Sm 150.4	63 еигоріим Eu 151.96	64 GADOLINI Gdd 157.2	T	им ру D	Dy	67 ногмим Но .64.93	68 еквиим Er 167.26	69 ^{тнилим} Тт 168.93	70 ^{ytterbium} Yb 173.04	71 LUTETIUM LU 174.97

95 Americium

Am

[243.1]

96 curium

Cm

[247.1]

94

PLUTONIUM

Pu

[239.1]

92

URANIUM

U

238.03

93

NEPTUNIUM

Np

[237.0]

97 BERKELLIUM

Bk

[247.1]

98

CALIFORNIUM

Cf

[252.1]

99 EINSTEINIUM

Es

[252.1]

100

FERMIUM

Fm

[257.1]

101 mendelevium

Md

[256.1]

102

NOBELIUM

No

[259.1]

103

LAWRENCIUM

Lr

[260.1]

PERIODIC TABLE OF THE ELEMENTS

22/14(b)

89

ACTINIUM

Ac

[227.0]

ACTINIDES

90

THORIUM

Th

232.04

91

PROTACTINIUM

Pa

[231.0]