- -813.4 kJ mol⁻¹
- The Second Law of Thermodynamics states that the entropy of the Universe increases for a spontaneous process.

$$\Delta S_{\text{univ}} = \Delta S_{\text{surr}} + \Delta S_{\text{sys}} \quad \text{where } \Delta S_{\text{surr}} = \frac{-\Delta H_{\text{sys}}}{T}$$
$$\Rightarrow \quad \Delta S_{\text{univ}} = \frac{-\Delta H_{\text{sys}}}{T} + \Delta S_{\text{sys}}$$
$$\Rightarrow \quad T\Delta S_{\text{univ}} = -\Delta H_{\text{sys}} + T\Delta S_{\text{sys}} = -\Delta G$$

 $\Delta S_{\text{univ}} > 0$ for spontaneous reaction and hence $\Delta G < 0$ for spontaneous reaction.

2010-N-3

• 1.80 g L⁻¹

decreases

no change

No. The number of gas molecules per unit volume is the same for both gases under the same conditions of temperature and pressure. The MW of CO_2 is 44, that of air about 28.8 ($0.2 \times 32 + 0.8 \times 28$), so CO_2 is always more dense than air.

2010-N-4

• 2.25

 ΔG is negative. K > 1, so reaction is spontaneous.

 ΔS is positive. There are 2 mol of gaseous products *versus* 1 mol of gaseous reactants.

Perform the reaction in a calorimeter to determine whether heat is gained or lost during the reaction.

OR

Increase the temperature and observe whether the equilibrium shifts to the right $(\Delta H > 0)$ or to the left $(\Delta H < 0)$.

• The presence of solute particles lowers the vapour pressure of the solution compared to that of the pure solvent. This results in a lowering of the freezing point and raising of the boiling point as shown in the phase diagram.

•
$$1.7 \times 10^{-4} \text{ g mol}^{-1}$$

2010-N-6

• (i) 2.10 (2.09 if approximation used) (ii) 3.17 (iii) 7.93 (iv) 12.30

2010-N-7

• The K_{sp} of Fe(OH)₃ is so low, that even at pH 7.4 there are sufficient OH⁻ ions present to precipitate the Fe³⁺ ions as Fe(OH)₃. To avoid precipitation and to allow a higher concentration of Fe³⁺ to be circulated, Fe³⁺ is complexed by *transferrin* in the bloodstream and iron is stored within *ferritin* within the cell.

• 1.4×10^{-5} M 1.7×10^{-5} M 5.45 (5.44 if done more exactly)

2010-N-9

• ¹⁸Ne has too many protons relative to neutrons within the nucleus. Therefore electrostatic repulsion between the protons destabilises the nucleus.

Positron emission:	$^{18}_{10}\text{Ne} \rightarrow ^{18}_{9}\text{F} + ^{0}_{+1}\text{e}$
Electron capture:	$^{18}_{10}\text{Ne} + ^{0}_{-1}\text{e} \rightarrow ^{18}_{-9}\text{F}$
1.665 s	
67.18 s	

2010-N-10

When dissolved in water, sodium stearate gives stearate ions which act as surfactant molecules. The have hydrophobic non-polar tails and ionically charged hydrophilic polar heads. This leads to formation of a stable, spherical micelle structure in which the grease molecules are contained within a monolayer of stearate ions with their heads pointing outwards.

• An acid whose anion is a weaker oxidising agent than H_3O^+ .

2010-N-11

• $3Cu^{2+}(aq) + 2Cr(s) \rightarrow 3Cu(s) + 2Cr^{3+}(aq)$ $Cr(s) | Cr^{3+}(aq) || Cu^{2+}(aq) | Cu(s)$ copper 1.03 V 598 kJ

• tetraamminedithiocyanatocobalt(III) chloride

N–H bonds are covalent in NH₃. These bonds are relatively short, strong and highly directional.

Co–:NH₃ coordination bonds are due to the donation of the lone pair of electrons on N to the Co^{3+} . These bonds are weaker, longer and less directional than covalent bonds.

 $[Co(NH_3)_4(SCN)_2]^+$ and Cl^- are ionically bonded in the solid state due to coulombic attraction between the oppositely charged ions. These bonds are strong but not directional.

2010-N-13

• Rate = $k[H_2SeO_3][I^-]^3[H^+]^2$

 $k = 5.00 \times 10^5 \text{ L}^5 \text{ mol}^{-5} \text{ s}^{-1}$

visible spectroscopy - I_3^- is coloured, I^- is not.