22/15(a)

The University of Sydney

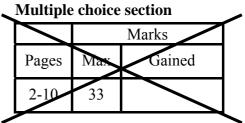
CHEM1109 - CHEMISTRY 1 LIFE SCIENCES B

CONFIDENTIAL

TIME ALLOWED: THREE HOURS

SECOND SEMESTER EXAMINATION

NOVEMBER 2007

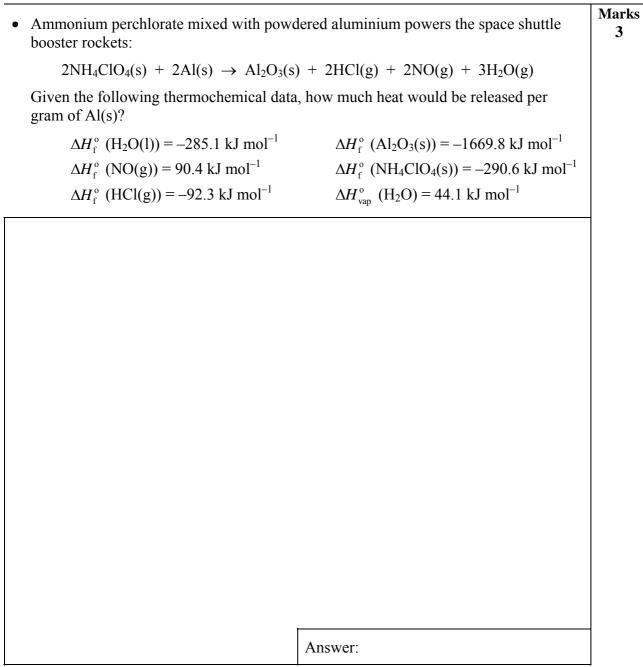

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY	SID	
NAME	NUMBER	
OTHER	TABLE	
NAMES	NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 21 pages of examinable material.
- Complete the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a •.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheet.
- Pages 17 and 24 are for rough working only.

OFFICIAL USE ONLY


Short answer section

	Marks			
Page	Max	Gained		Marker
11	7			
12	7			
13	5			
14	3			
15	6			
16	6			
18	6			
19	6			
20	6			
21	5			
22	5			
23	5			
Total	67			

Marks • A solution of 2.00 M NaOH (50.0 mL) at 44.9 °C is added to a constant pressure 4 ("coffee cup") calorimeter containing 250.0 mL of 0.70 M HNO₃ at 21.5 °C. The final temperature of the solution is 29.9 °C. Calculate the enthalpy of neutralisation of $OH^{-}(aq)$ and $H^{+}(aq)$ in kJ mol⁻¹. Assume the density of these solutions is 1.000 g mL⁻¹ and the specific heat capacity of the solutions is 4.184 J K⁻¹ g⁻¹. Answer: Calculate the pH in the combined solution in the calorimeter at 21.5 °C. Answer: A 300.0 mL solution of HCl has a pH of 1.22. Given that the pK_a of iodic acid, HIO₃, 3 ٠ is 0.79, how many moles of sodium iodate, NaIO₃, would need to be added to this solution to raise its pH to 2.00? Answer:

• Acetylene, C ₂ H ₂ , can be produced by reacting calcium carbide,	CaC ₂ , with water: 4
$CaC_2(s) + 2H_2O(l) \rightarrow Ca(OH)_2(s) + C_2H_2(s)$	g)
A 1.000 g sample of CaC_2 is placed in a sealed vessel that contate $H_2O(1)$ and 250.0 mL of $N_2(g)$ at 1.000 atm, and allowed to react water. The final pressure in the sealed vessel at 22.0 °C is 2.537 vapour pressure of water in the sealed vessel at 22.0 °C. Give y Ignore any change in the volume of the water.	t completely with the 7 atm. Determine the
Answer:	
The solubility of acetylene in water at 22.0 °C is small. If the te raised, would you expect this solubility to increase or decrease?	
• Draw all possible stereoisomers of the complex ion [CoCl ₂ (en) ₂ or <i>trans</i> .] ⁺ . Label each as cis 3

• Consider the reaction 2SC	$O_2(g) + O_2(g) \implies 2SO_3(g)$	Mark 5
$\Delta H^\circ = -198.4 \text{ kJ mol}^{-1} \text{ and } \Delta S^\circ =$	$-187.9 \text{ J K}^{-1} \text{ mol}^{-1} \text{ at } 25 \text{ °C}.$	
Show that this reaction is spontan	eous at 25 °C.	
If the volume of the reaction syster reaction move?	em is increased at 25 °C, in which direction will	the
Calculate the value of the equilibrium	rium constant, <i>K</i> , at 25 °C.	
	K =	
Assuming ΔH° and ΔS° are indep is the reaction non-spontaneous?	endent of temperature, in which temperature ran	ıge
	Answer:	

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

	own bacterial cell walls. A solution containing solution has an osmotic pressure of 0.00125 atm ysozyme?
	Answer:
point of 1.00 L of water to -10.0 °C?	Answer: H ₂ CH ₂ OH, is required to lower the freezing ? The freezing point depression constant of water nsity of water is 1.00 g mL ^{-1} at 0 °C.
point of 1.00 L of water to -10.0 °C?	H ₂ CH ₂ OH, is required to lower the freezing ? The freezing point depression constant of water
point of 1.00 L of water to -10.0 °C?	H ₂ CH ₂ OH, is required to lower the freezing ? The freezing point depression constant of water
point of 1.00 L of water to -10.0 °C?	H ₂ CH ₂ OH, is required to lower the freezing ? The freezing point depression constant of water
point of 1.00 L of water to -10.0 °C?	H ₂ CH ₂ OH, is required to lower the freezing ? The freezing point depression constant of water
point of 1.00 L of water to -10.0 °C?	H ₂ CH ₂ OH, is required to lower the freezing ? The freezing point depression constant of water
point of 1.00 L of water to -10.0 °C?	H ₂ CH ₂ OH, is required to lower the freezing ? The freezing point depression constant of water
point of 1.00 L of water to -10.0 °C?	H ₂ CH ₂ OH, is required to lower the freezing ? The freezing point depression constant of water

The first step in the metabolism of glucose in biological systems is the addition of a phosphate group in a dehydration-condensation reaction: glucose(aq) + H ₂ PO ₄ ⁻ (aq) \iff [glucose phosphate] ⁻ (aq) + H ₂ O(l) The free energy change associated with this reaction is $\Delta G^{\circ} = 13.8$ kJ mol ⁻¹ . The reaction is driven forwards by harnessing the free energy associated with the
The free energy change associated with this reaction is $\Delta G^{\circ} = 13.8 \text{ kJ mol}^{-1}$. The reaction is driven forwards by harnessing the free energy associated with the
reaction is driven forwards by harnessing the free energy associated with the
hydrolysis of adenosine triphosphate, ATP^{4-} , to adenosine diphosphate, ADP^{3-} :
$ATP^{4-}(aq) + H_2O(l) \iff ADP^{3-}(aq) + H_2PO_4^{-}(aq) \qquad \Delta G^{\circ} = -30.5 \text{ kJ mol}$
The overall reaction is thus:
glucose(aq) + $ATP^{4-}(aq) \iff [glucose phosphate]^{-}(aq) + ADP^{3-}(aq)$ Calculate the equilibrium constant associated with this overall reaction at body temperature (37 °C).
A
Answer:
flask containing 175 mL of a 0.0500 M aqueous solution of glucose at 37 °C. What percentage of the ATP ⁴⁻ will have been consumed when the system reaches equilibrium?
Answer:

Calculate the concentration of volume upon addition of th	f Zn ²⁺ (aq) in solution at equilibrium. Ignore any change e salt. K_{stab} of $[Zn(CN)_4]^{2-} = 4.2 \times 10^{19} \text{ M}^{-4}$.
	Answer:
ame the complex ion.	
ame the complex ion.	
he half life of the radioactive	e isotope ¹⁶ N is 7.13 s. Calculate how long it takes to given sample to 71.6% of the initial value.
he half life of the radioactive	
he half life of the radioactive	
he half life of the radioactive	
he half life of the radioactive	

The solubility product constant of AgCl is electrode potentials found on the data pag of a half-cell formed by: (a) an Ag electrode immersed in a saturate	s $K_{sp} = 1.8 \times 10^{-10} \text{ M}^2$. Using the relevant ge, calculate the reduction potential at 298 K ed solution of AgCl.	Marks 6
	Answer:	
(b) an Ag electrode immersed in a 0.5 M s precipitate.		
	Answer:	-
Each of these half-cells is connected to a swhich half-cell, (a) or (b), will clear evide change(s) observed.		

• Describe how the addition of an electrolyte can alter the state of a colloidal dispersion.	Marks 2
• An aqueous solution of CuSO ₄ is electrolysed with a current of 1.00 A for 60 minutes. Calculate the mass of the products that are formed at the two electrodes.	4

• The pH of a solution can be controlled by adding small amounts of gaseous HCl. Assuming no change in volume, calculate what the pH of the solution must be to just dissolve 1.00 g of NiS suspended in 1.0 L of water.					
Data:			$K = 1.1 \times 10^{-20} \text{ M}^2$		
	$K_{\rm sp}({\rm NiS}) = 1.0 \times$	10^{-22} M^2			
		pH =		1	

• A galvanic cell consists of a Ni ²⁺ /Ni half cell with $[Ag^+] = 1.00$ M. Calculate the e	cell with $[Ni^{2+}] = 1.00$ M, and a Ag ⁺ /Ag half electromotive force of the cell at 25 °C.	Mark 5
	Answer:	-
Calculate the equilibrium constant of the		-
		-
	Answer:	-
Calculate the standard free energy change	e of the reaction at 25 °C.	
	Answer:	-
Is the reaction spontaneous? Give reason	is for your answer.	-
		-
Express the overall reaction in the shorth	and voltaic cell notation.	-

• Phosgene i	is a toxic gas prepared	l by the re	eaction of ca	rbon monoxide with chlorine:	Marks 5
C			$(j) \rightarrow COCl$		5
The follow				of its formation at 150 °C.	
Experiment	initial [CO] (M)	initial	[Cl ₂] (M)	Initial rate (M s^{-1})	
1	1.00	0	.100	$1.29 imes 10^{-29}$	_
2	0.100	0	.100	$1.33 imes 10^{-30}$	
3	0.100	1	1.00	$1.30 imes 10^{-29}$	
4	0.100	0.	0100	1.32×10^{-31}	
Determine the	he rate law for the reac	ction.			
					_
Calculate the	e value of the rate cons	stant at 15	50 °C.		
			Answer:		
Calculate the	e rate of appearance of	fphosgen	e when [CO]	$= [Cl_2] = 1.3$ M.	
			Answer:		

CHEM1109 - CHEMISTRY 1 LIFE SCIENCES B

DATA SHEET

Physical constants Avogadro constant, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$ Faraday constant, $F = 96485 \text{ C mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \text{ J s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \text{ m s}^{-1}$ Rydberg constant, $E_R = 2.18 \times 10^{-18} \text{ J}$ Boltzmann constant, $k_B = 1.381 \times 10^{-23} \text{ J K}^{-1}$ Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ $= 0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \text{ C}$ Mass of electron, $m_p = 1.6726 \times 10^{-27} \text{ kg}$ Mass of neutron, $m_p = 1.6749 \times 10^{-27} \text{ kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors 1 atm = 760 mmHg = 101.3 kPa 0 °C = 273 K 1 L = 10^{-3} m³ 1 Å = 10^{-10} m 1 eV = 1.602×10^{-19} J 1 Ci = 3.70×10^{10} Bq 1 Hz = 1 s⁻¹

Deci	mal fract	ions	Deci	mal multi	ples
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol
10^{-3}	milli	m	10^{3}	kilo	k
10^{-6}	micro	μ	10^{6}	mega	Μ
10^{-9}	nano	n	10 ⁹	giga	G
10^{-12}	pico	р			

CHEM1109 - CHEMISTRY 1 LIFE SCIENCES B

Reaction	E° / V
$S_2O_8^{2-} + 2e^- \rightarrow 2SO_4^{2-}$	+2.01
$Co^{3+}(aq) + e^- \rightarrow Co^{2+}(aq)$	+1.82
$Ce^{4+}(aq) + e^- \rightarrow Ce^{3+}(aq)$	+1.72
$Au^{3+}(aq) + 3e^- \rightarrow Au(s)$	+1.50
$Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Br_2 + 2e^- \rightarrow 2Br^-(aq)$	+1.10
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80
$Fe^{3+}(aq) + e^- \rightarrow Fe^{2+}(aq)$	+0.77
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53
$\mathrm{Cu}^{2+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2\mathrm{H}^{+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{g})$	0 (by definition)
$Fe^{3+}(aq) + 3e^- \rightarrow Fe(s)$	-0.04
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.24
$\operatorname{Co}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Co}(s)$	-0.28
$Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$	-0.44
$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Cr}(s)$	-0.74
$Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$	-0.76
$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83
$Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$	-0.89
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.68
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2.36
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71
$Ca^{2+}(aq) + 2e^{-} \rightarrow Ca(s)$	-2.87
$Li^+(aq) + e^- \rightarrow Li(s)$	-3.04

CHEM1109 - CHEMISTRY 1 LIFE SCIENCES B

	ejui jormulas
Quantum Chemistry	Electrochemistry
$E = hv = hc/\lambda$	$\Delta G^{\circ} = -nFE^{\circ}$
$\lambda = h/mv$	Moles of $e^- = It/F$
$4.5k_{\rm B}T = hc/\lambda$	$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$
$E = -Z^2 E_{\rm R}(1/n^2)$	$= E^{\circ} - (RT/nF) \times \ln Q$
$\Delta x \cdot \Delta (mv) \ge h/4\pi$	$E^{\circ} = (RT/nF) \times 2.303 \log K$
$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	$= (RT/nF) \times \ln K$
	$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$
Acids and Bases	Gas Laws
$pK_{\rm w} = pH + pOH = 14.00$	PV = nRT
$\mathbf{p}K_{\mathrm{w}} = \mathbf{p}K_{\mathrm{a}} + \mathbf{p}K_{\mathrm{b}} = 14.00$	$(P+n^2a/V^2)(V-nb) = nRT$
$pH = pK_a + \log\{[A^-] / [HA]\}$	
Colligative properties	Kinetics
$\pi = cRT$	$t_{1/2} = \ln 2/k$
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$k = A e^{-E_{a}/RT}$
$\mathbf{p} = k\mathbf{c}$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_{\rm o} - kt$
$\Delta T_{\rm f} = K_{\rm f} m$	$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$
$\Delta T_{\rm b} = K_{\rm b} m$	$k_1 = R T_1 T_2$
Radioactivity	Thermodynamics & Equilibrium
$t_{\nu_2} = \ln 2/\lambda$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$
$A = \lambda N$	$\Delta G = \Delta G^{\circ} + RT \ln Q$
$\ln(N_0/N_t) = \lambda t$	$\Delta G^{\circ} = -RT \ln K$
14 C age = 8033 ln(A_0/A_t)	$K_{\rm p} = K_{\rm c} \left(RT \right)^{\Delta n}$
Miscellaneous	Mathematics
$A = -\log_{10} \frac{I}{I_0}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
$A = \varepsilon c l$	$\ln x = 2.303 \log x$
$E = -A \frac{e^2}{4\pi\varepsilon_0 r} N_{\rm A}$	

Useful formulas

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1																	2
HYDROGEN H																	HELIUM He
1.008		1															4.003
3 LITHIUM	4 BERYLLIUM											5 boron	6 CARBON	7 NITROGEN	8 oxygen	9 FLUORINE	10 NEON
Li	Be											B	С	N	0	F	Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11 sodium	12 magnesium											13 ALUMINIUM	14 SILICON	15 phosphorus	16 sulfur	17 CHLORINE	18 ARGON
Na	Mg											Al	Si	P	S	Cl	Ar
22.99	24.31											26.98	28.09	30.97	32.07	35.45	39.95
19	20 calcium	21 scandium	22 TITANIUM	23 vanadium	24 сняомиим	25 manganese	26 IRON	27 cobalt	28 NICKEL	29 COPPER	30 ZINC	31 gallium	32 germanium	33 ARSENIC	34 selenium	35 bromine	36 KRYPTON
POTASSIUM K	Ca	SCANDION	Ti	VANADIUM	Cr	Manganese	Fe	Совал	Nickel	Cu	Zn	Ga	Germanium	ARSENIC	Selenium	BROMINE	Kripion
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.59	74.92	78.96	79.90	83.80
37 RUBIDIUM	38 strontium	39 yttrium	40	41 NIOBIUM	42 molybdenum	43 TECHNETIUM	44 ruthenium	45 RHODIUM	46	47 SILVER	48 cadmium	49	50	51	52	53	54
R b	STRONTION	Y	zirconium Zr	Nobilom	MOLYBDENUM	Тс	RUTHENIUM	Rhobium	PALLADIUM Pd	Ag	CADMIUM	INDIUM In	Sn	ANTIMONY Sb	TELLURIUM Te	IODINE	xenon Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98.91]	101.07	102.91	106.4	107.87	112.40	114.82	118.69	121.75	127.60	126.90	131.30
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
CAESIUM CS	barium Ba		HAFNIUM Hf	tantalum Ta	TUNGSTEN	RHENIUM Re	OSMIUM OS	IRIDIUM Ir	PLATINUM Pt		MERCURY Hg	THALLIUM TI	PD	BISMUTH Bi	POLONIUM PO	ASTATINE At	radon Rn
132.91	137.34		178.49	180.95	183.85	186.2	190.2	192.22	195.09	196.97	200.59	204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
87	88	89-103	104	105	106	107	108	109	110	111							
FRANCIUM Fr	radium Ra		RUTHERFORDIUM Rf	DUBNIUM Db	seaborgium Sg	BOHRIUM Bh	HASSIUM HS	MEITNERIUM Mt	darmstadtium DS	roentgenium Rg							
[223.0]	[226.0]		[261]	[262]	[266]	[262]	[265]	[266]	[271]	[272]							

LANTHANIDES	57 lanthanum La	58 cerium Ce	59 praseodymium Pr	60 ^{NEODYMIUM} Nd	61 _{ркометніим} Рт	62 samarium Sm	63 ^{Е Ш К}	64 ^{gadolinium} Gd	65 ^{теквіим} Тb	66 dysprosium Dv	67 ^{ноіміим} Но	68 Erbium Er	69 ^{тнилим} Тт	70 ^{уттервіцм} Yb	71 ^{LUTETIUM} LU
	138.91	140.12	140.91	144.24	[144.9]	150.4	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
ACTINIDES	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	ACTINIUM AC	THORIUM Th	PROTACTINIUM Pa	URANIUM U	NEPTUNIUM Np	PLUTONIUM Pu	AMERICIUM Am	CURIUM Cm	BERKELLIUM Bk	CALIFORNIUM Cf	EINSTEINIUM Es	FERMIUM Fm	MENDELEVIUM Md	NOBELIUM NO	LAWRENCIUM Lr
	[227.0]	232.04	[231.0]	238.03	[237.0]	[239.1]	[243.1]	[247.1]	[247.1]	[252.1]	[252.1]	[257.1]	[256.1]	[259.1]	[260.1]