22/15(a)

The University of Sydney

CHEM1109 - CHEMISTRY 1B LIFE SCIENCES

CONFIDENTIAL

TIME ALLOWED: THREE HOURS

SECOND SEMESTER EXAMINATION

NOVEMBER 2008


GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY	SID	
NAME	NUMBER	
OTHER	TABLE	
NAMES	NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 22 pages of examinable material.
- Complete the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a ●.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheet.
- Page 24 is for rough working only.

OFFICIAL USE ONLY

Short answer section

	Marks			
Page	Max	Gained		Marker
11	5			
12	4			
13	5			
14	5			
15	5			
16	6			
17	5			
18	5			
19	5			
20	6			
21	4			
22	6			
23	8			
Total	69			

 Carbon monoxide is commonly used in the reduction of iron ore to iron metal. Iron ore is mostly haematite, Fe₂O₃, in which case the complete reduction reaction is: Fe₂O₃(s) + 3CO(g) → 2Fe(s) + 3CO₂(g) ΔH° = -25 kJ mol⁻¹ Incomplete reduction, however, results in the formation of magnetite, Fe₃O₄: 3Fe₂O₃(s) + CO(g) → 2Fe₃O₄(s) + CO₂(g) ΔH° = -47 kJ mol⁻¹ Use these heats of reaction to calculate the enthalpy change when one mole of magnetite is reduced to iron metal using carbon monoxide.
 Answer:
 Another iron oxide that can be formed as an intermediate during reduction is FeO.

Use the following table of thermochemical data to show whether the formation of FeO from Fe_3O_4 is spontaneous or not at 25 °C.

	$\Delta_{\rm f} H^{\circ} ({\rm kJ} {\rm mol}^{-1})$	S° (J K ⁻¹ mol ⁻¹)
FeO	-272	61
Fe ₃ O ₄	-1118	146
СО	-111	198
CO ₂	-394	214

•	a 50.0 g equilibr tempera	g block of ice at 0.0 °C. The ice m rium the temperature of the water i ature (in °C) of the iron?		Marks 4
	Data:	The specific heat capacity of liqu		
		The specific heat capacity of soli	d iron is $0.450 \text{ J K}^{-1} \text{ g}^{-1}$.	
		The molar enthalpy of fusion of i	ice (water) is 6.007 kJ mol ^{-1} .	
				_
			Answer:	

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

• The freezing point of a sample of seawater is measured as -2.15 °C at 1 atm pressure. Assuming that the concentrations of other solutes are negligible, and that the salt does not significantly change the density of the water from 1.00 kg L ⁻¹ , determine the concentration (in mol L ⁻¹) of NaCl in this sample. (The molal freezing point depression constant for H ₂ O is 1.86 °C m ⁻¹)	Marks 5
Answer:	
In principle, it would be possible to desalinate this water by pumping it into a cylindrical tower, and allowing gravity to push pure water through a semipermeable membrane at the bottom. At 25 °C, how high would the tower need to be for this to work? (The density of liquid Hg at 25 °C is 13.53 g cm ⁻³ .)	
Answer:	

		act according to the ≥ 2HI(g)	e following equation. $K_c = 49.0$	Mai 5
Hydrogen also rea	acts with sulfur at	t 700 °C:		
2H ₂ ($(\mathbf{g}) + \mathbf{S}_2(\mathbf{g}) =$	$\rightarrow 2H_2S(g)$	$K_{\rm c}=1.075\times10^8$	
Determine K_c for	the following ove	erall equilibrium re	action at 700 °C.	
	$2I_2(g) + 2H_2$	$S(g) \iff S_2(g)$	(g) + 4HI(g)	
		<i>K</i> _c =		
	ard free energy ch		this overall equilibrium	
	ard free energy ch		this overall equilibrium	
	ard free energy ch		this overall equilibrium	
	ard free energy ch		this overall equilibrium	
	ard free energy ch		this overall equilibrium	
	ard free energy ch		this overall equilibrium	
	ard free energy ch		this overall equilibrium	
	ard free energy ch		this overall equilibrium	
	ard free energy ch		this overall equilibrium	
	ard free energy ch		• this overall equilibrium	
	ard free energy ch		this overall equilibrium	
	ard free energy ch		this overall equilibrium	
What is the standa reaction?	ard free energy ch		this overall equilibrium	
	ard free energy ch		this overall equilibrium	
	ard free energy ch		this overall equilibrium	
	ard free energy ch		this overall equilibrium	

THIS QUESTION CONTINUES ON THE NEXT PAGE.

If 0.250 mol of HI(g) is introduced into a concentration of $I_2(g)$ at equilibrium?	a 2.00 L flask at 700 °C, what will be the	
	Answer:	
f 0.274 g of H_2S were now introduced in concentration of $S_2(g)$ at equilibrium?	nto the same flask, what would be the	
	Answer:	

• Calculate the pH of a 0.10 mol L^{-1} solution	on of HF. (The pK_a of HF is 3.17.)	Marks 6
	Answer:	_
Willie and the CN-Transferred to be added to 1		_
buffer with a pH of 3.00?	100.0 mL of the above solution to make a	
	Answer:	
Explain why HCl is a much stronger acid	than HF.	

•	certain types o 0.075 mol of c		ncentration	hemotherapy agent against of Pt ²⁺ (aq) ions in solution when 0 M solution of NH ₃ .	Marks 5
			Answer:		
	What changes $Pt^{2+}(aq)$ ions if	would occur to the values solid KCl were dissolved	of K_{stab} for in the above	cisplatin and the concentration of re solution?	
	K _{stab}	increase no	change	decrease	
	$[Pt^{2+}(aq)]$	increase no	change	decrease	

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

• A galvanic cell is made of a Zn^{2+}/Zn half cell with $[Ag^{+}] = 0.050$ M. Calculate the	cell with $[Zn^{2+}] = 2.0$ M and an Ag ⁺ /Ag half electromotive force of the cell at 25 °C.	Marks 5
	Answer:	-
Calculate the equilibrium constant of the	reaction at 25 °C.	
	Answer:	_
Calculate the standard Gibbs free energy of	of the reaction at 25 °C.	
	Answer:	-
Indicate whether the reaction is spontaneo	ous or not. Give a reason for your answer.	
Express the overall reaction in the shortha	and voltaic cell notation.	
		1

•	Outline the rules that determine nuclear stability.	Marks 3
		_
		_
•	Explain why surface effects are important in colloidal systems.	2

• Explain how soap acts to remove oil.	Marks 2
• A melt of NaCl is electrolysed for 35 minutes with a current of 3.50 A. Calculate mass of sodium and volume of chlorine at 40 °C and 1.00 atm that are formed.	e the 4
]

•	Draw the potential energy diagram for an endothermic reaction. Indicate on the diagram the activation energy for both the forward and reverse reaction, and the enthalpy of reaction.	Marks 4
<u> </u>	Would you expect the forward or the reverse reaction to be faster? Why?	-

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

CHEM1109

	ally determined rate equation is: $Rate = k[NO]$ pression is consistent with the following mechan		
Step 1	$2NO_2(g) \implies N_2O_4(g)$	fast	
Step 2	$N_2O_4(g) \rightarrow NO(g) + NO_3(g)$	slow	
Step 3	$NO_3(g) + CO(g) \rightarrow NO_2(g) + CO_2(g)$	fast	
	t of a particular reaction quadruples when the ter 0 °C to 50 °C. Calculate the activation energy,		-

•	An Ag electrode immersed in a saturated aqueous solution of AgBr has a reduction potential of 0.437 V at 25 °C with respect to the standard hydrogen electrode. Calculate the solubility product of AgBr at 25 °C.	Marks 8
	Answer:	
	A Pd electrode immersed in an aqueous solution containing 0.01 Pd(NO ₃) ₂ M	

A Pd electrode immersed in an aqueous solution containing $0.01 \text{ Pd}(\text{NO}_3)_2 \text{ M}$ and 1.00 M NaCl has a reduction potential of -0.860 V at 25 °C with respect to the Ag electrode above. Calculate the stability constant of the complex ion, $[\text{PdCl}_4]^{2^-}$, at 25 °C.

Δ	ns	x x 7	or	٠
\mathbf{n}	.115	vv	UI.	٠

CHEM1109 - CHEMISTRY 1B LIFE SCIENCES

DATA SHEET

 $Physical \ constants$ Avogadro constant, $N_{\rm A} = 6.022 \times 10^{23} \ {\rm mol}^{-1}$ Faraday constant, $F = 96485 \ {\rm C} \ {\rm mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \ {\rm J} \ {\rm s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \ {\rm m} \ {\rm s}^{-1}$ Rydberg constant, $E_{\rm R} = 2.18 \times 10^{-18} \ {\rm J}$ Boltzmann constant, $k_{\rm B} = 1.381 \times 10^{-23} \ {\rm J} \ {\rm K}^{-1}$ Permittivity of a vacuum, $\varepsilon_0 = 8.854 \times 10^{-12} \ {\rm C}^2 \ {\rm J}^{-1} \ {\rm m}^{-1}$ Gas constant, $R = 8.314 \ {\rm J} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ $= 0.08206 \ {\rm L} \ {\rm atm} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \ {\rm C}$ Mass of electron, $m_{\rm e} = 9.1094 \times 10^{-31} \ {\rm kg}$ Mass of proton, $m_{\rm p} = 1.6726 \times 10^{-27} \ {\rm kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors	
1 atm = 760 mmHg = 101.3 kPa	$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$
0 °C = 273 K	$1 \text{ Hz} = 1 \text{ s}^{-1}$
$1 L = 10^{-3} m^3$	1 tonne = 10^3 kg
$1 \text{ Å} = 10^{-10} \text{ m}$	$1 \text{ W} = 1 \text{ J s}^{-1}$
$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$	

Deci	mal fract	ions	Deci	Decimal multiples						
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol					
10^{-3}	milli	m	10^{3}	kilo	k					
10^{-6}	micro	μ	10^{6}	mega	Μ					
10^{-9}	nano	n	10 ⁹	giga	G					
10^{-12}	pico	р	10^{12}	tera	Т					

CHEM1109 - CHEMISTRY 1B LIFE SCIENCES

Standard Keudetion i otentiais, E	
Reaction	E° / V
$S_2O_8^{2-} + 2e^- \rightarrow 2SO_4^{2-}$	+2.01
$\mathrm{Co}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})$	+1.82
$\operatorname{Ce}^{4+}(\operatorname{aq}) + \operatorname{e}^{-} \rightarrow \operatorname{Ce}^{3+}(\operatorname{aq})$	+1.72
$\operatorname{Au}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Au}(s)$	+1.50
$Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Br_2 + 2e^- \rightarrow 2Br^-(aq)$	+1.10
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80
$\operatorname{Fe}^{3+}(\operatorname{aq}) + e^{-} \rightarrow \operatorname{Fe}^{2+}(\operatorname{aq})$	+0.77
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53
$\operatorname{Cu}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cu}(s)$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2\mathrm{H}^{+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{g})$	0 (by definition)
$\operatorname{Fe}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Fe}(s)$	-0.04
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.24
$\operatorname{Co}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Co}(s)$	-0.28
$\operatorname{Fe}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Fe}(s)$	-0.44
$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Cr}(s)$	-0.74
$\operatorname{Zn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Zn}(s)$	-0.76
$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83
$\operatorname{Cr}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cr}(s)$	-0.89
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.68
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2.36
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71
$Ca^{2+}(aq) + 2e^{-} \rightarrow Ca(s)$	-2.87
$Li^+(aq) + e^- \rightarrow Li(s)$	-3.04

CHEM1109 - CHEMISTRY 1B LIFE SCIENCES

05	eful formulas
Thermodynamics & Equilibrium	Electrochemistry
$\Delta U = q + w = q - p\Delta V$	$\Delta G^{\circ} = -nFE^{\circ}$
$\Delta = \sum_{sys} \Delta_{sys} H$	Moles of $e^- = It/F$
$\Delta_{\text{universe}}S = \Delta_{\text{sys}}S - \frac{\Delta_{\text{sys}}H}{T_{\text{sys}}}$	$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$
$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$	$= E^{\circ} - (RT/nF) \times \ln Q$
$\Delta G = \Delta G^{\circ} + RT \ln Q$	$E^{\circ} = (RT/nF) \times 2.303 \log K$
$\Delta G^{\circ} = -RT \ln K$	$= (RT/nF) \times \ln K$
$K_{\rm p} = K_{\rm c} \left(RT ight)^{\Delta n}$	$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$
Colligative properties	Quantum Chemistry
$\pi = cRT$	$E = h\nu = hc/\lambda$
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$\lambda = h/mv$
$\mathbf{p} = k\mathbf{c}$	$4.5k_{\rm B}T = hc/\lambda$
$\Delta T_{ m f} = K_{ m f} m$	$E = -Z^2 E_{\mathrm{R}}(1/n^2)$
$\Delta T_{\rm b} = K_{\rm b} m$	$\Delta x \cdot \Delta(mv) \ge h/4\pi$
	$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$
Acids and Bases	Gas Laws
$pK_{w} = pH + pOH = 14.00$	PV = nRT
$\mathbf{p}K_{\mathrm{w}} = \mathbf{p}K_{\mathrm{a}} + \mathbf{p}K_{\mathrm{b}} = 14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$
$pH = pK_a + \log\{[A^-] / [HA]\}$	
Radioactivity	Kinetics
$t_{\nu_2} = \ln 2/\lambda$	$t_{1/2} = \ln 2/k$
$A = \lambda N$	$k = A e^{-E_{a}/RT}$
$\ln(N_0/N_t) = \lambda t$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_{\rm o} - kt$
14 C age = 8033 ln(A_0/A_t)	$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$
Miscellaneous	Mathematics
$A = -\log_{10} \frac{I}{I_0}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
$A = \varepsilon c l$	$\ln x = 2.303 \log x$
$E = -A \frac{e^2}{4\pi\varepsilon_0 r} N_{\rm A}$	

Useful formulas

1	2	3	4	5	6	7	8	9	10	11	1	2 1	3	14	15	16	17	18
1 hydrogen]																	2 HELIUM
H 1.008																		He 4.003
3 LITHIUM	4 beryllium												5 RON	6 carbon	7 NITROGEN	8 oxygen	9 FLUORINE	10 NEON
Li	Be												B	CARBON	NIROGEN	O	F	Ne
6.941	9.012												.81	12.01	14.01	16.00	19.00	20.18
11 sodium	12 magnesium												3 IINIUM	14 SILICON	15 PHOSPHORUS	16 SULFUR	17 CHLORINE	18 ARGON
Na	Mg												N	Si	P	S	Cl	Ar
22.99	24.31				-					-			.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	3		31	32	33	34	35	36
POTASSIUM K	CALCIUM Ca	scandium Sc	TITANIUM Ti	VANADIUM V	CHROMIUM Cr	MANGANESE Mn	Fe	COBALT CO	NICKEL Ni	COPPER Cu	Z		LIUM Ba	GERMANIUM Ge	ARSENIC AS	selenium Se	BROMINE Br	KRYPTON Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55			.72	72.59	74.92	78.96	79.90	83.80
37	38 strontium	39 yttrium	40	41	42 molybdenum	43 TECHNETIUM	44	45	46	47	4		9	50	51	52 TELLURIUM	53	54
RUBIDIUM Rb	STRONTIUM	YTRIOM	ZIRCONIUM	NIOBIUM Nb	MOLYBBENUM	Тс	RUTHENIUM Ru	RHODIUM Rh	palladium Pd	SILVER Ag	CADN		п n	Sn	ANTIMONY Sb	Te	IODINE	xenon Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98.91]	101.07	102.91	106.4	107.87			4.82	118.69	121.75	127.60	126.90	131.30
55	56	57-71	72	73	74	75	76	77	78	79	8		31	82	83	84	85	86
CAESIUM CS	BARIUM Ba		hafnium Hf	TANTALUM Ta	TUNGSTEN W	RHENIUM Re	OSMIUM OS	iridium Ir	PLATINUM Pt		H		LLIUM	Pb	візмитн Ві	POLONIUM PO	ASTATINE At	RADON Rn
132.91	137.34		178.49	180.95	183.85	186.2	190.2	192.22	195.09	196.97		0	4.37	207.2	208.98	[210.0]	[210.0]	[222.0]
87		89-103		105	106	107	108	109	110	111								
FRANCIUM Fr	RADIUM Ra		rutherfordium Rf	DUBNIUM Db	seaborgium Sg	BOHRIUM Bh	HASSIUM HS	MEITNERIUM Mt	darmstadtium DS	ROENTGENII Rg	JM							
[223.0]	[226.0]		[261]	[262]	[266]	[262]	[265]	[266]	[271]	[272]								
								-				-						<u>. </u>
	LANTH		58 ERIUM PR/	59 seodymium	60 NEODYMIUM	61 promethium	62 samarium	63 Europium	64 gadolin		65 Erbium	66 dysprosium		67	68 erbium	69 THULIUM	70 ytterbium	71
LANTHANO			Ce	Pr	Nd	PROMETHIOM	SMARIUM	Eu	GALOLIN		Tb	DISPROSION		Ho	Er	Tm	Yb	Lu
	138			40.91	144.24	[144.9]	150.4	151.96			58.93	162.50		54.93	167.26	168.93	173.04	174.97
	89		90	91	92	93	94	95	96		97	98		99	100	101	102	103
ACTINOID	S ACTIN		orium pro	Pa Pa	URANIUM U	NEPTUNIUM Np	PLUTONIUM Pu	AMERICIUM Am	CURIU		rkellium Bk	CALIFORNIU Cf		steinium Es	FERMIUM Fm	MENDELEVIUM Md	NOBELIUM NO	LAWRENCIUM
	[227			231.0]	238.03	[237.0]	[239.1]	[243.1]			247.1]	[252.1]		252.1]	[257.1]	[256.1]	[259.1]	[260.1]

PERIODIC TABLE OF THE ELEMENTS