CHEM1405 (Vet. Science) - June 2008

2008-J-2

- (a) A biological catalyst.
 - (b) A non-protein part of an enzyme (eg haem group in haemoglobin) that is required for the enzymic activity.
 - (c) A sequence of amino acids linked by peptide bonds (amide functional group).
- The intermolecular forces in I₂ and CH₄ are weak dispersion forces. Iodine is a much larger atom that H or C and hence has more electrons and a much more polarisable electron cloud, so I₂ has stronger dispersion forces and higher melting point. NaCl has relatively strong ionic bonds. SiO₂ is a covalent network compound with very high melting point as covalent bonds need to be broken.

2008-J-3

• The NO₃⁻ ion is resonance stabilised as shown.

$$\begin{bmatrix} :0: & :0: & :0: \\ :0. & 0: & :0: & :0: \\ \vdots & 0: & \vdots & \vdots & \vdots \\ \vdots & 0: & \vdots & \vdots \\ \vdots$$

The bond order is 4/3 = 1.33

• The molecule has two major resonance contributors as shown.

As a consequence of resonance, the CN bond has partial double bond character. This causes the peptide bond to be planar with restricted rotation.

2008-J-4

•
$$1s^2 2s^2 2p^6 3s^2 3p^1$$

 $n = 3, l = 1, m_1 = 1, m_s = +\frac{1}{2}$

• $1.2 \times 10^3 \text{ g mol}^{-1}$

2008-J-5

• 1.03 V

$$1.51 \times 10^{35}$$

-201 kJ mol⁻¹

Reaction is spontaneous as $\Delta G < 0$.

$$Ni(s) |Ni^{2+}(aq)|| Ag^{+}(aq)| Ag(s)$$

• $-128.8 \text{ kJ mol}^{-1}$

Reaction is spontaneous as $\Delta G < 0$.

113.7 K

2008-J-7

• Cu does not dissolve in dilute HCl because of relevant electrode potentials.

$$Cu(s) \rightarrow Cu^{2+}(aq) + 2e^{-}$$
 $E^{\circ}_{ox} = -0.34 \text{ V}$

$$2H^{+}(aq) + 2e^{-} \rightarrow H_{2}(g)$$
 $E^{\circ}_{red} = 0 \text{ V}$

Cu dissolves in dilute HNO₃ because reduction of NO₃⁻ ion occurs.

$$Cu(s) \rightarrow Cu^{2+}(aq) + 2e^{-}$$
 $E^{\circ}_{ox} = -0.34 \text{ V}$

$$NO_3^-(aq) + 4H^+(aq) + 3e^- \rightarrow NO(g) + 2H_2O \qquad E^{\circ}_{red} = 0.96 \text{ V}$$

• $+3.7 \times 10^{34}$

Exothermic. Increasing the temperature reduces the K_p , ie pushes the reaction to the left. It is therefore exothermic (from Le Chatelier's principle).

2008-J-8

• Rate = $k[CO][Cl_2]$

$$1.3 \times 10^{-2} \text{ L mol}^{-1} \text{ s}^{-1}$$

$$2.2 \times 10^{-2} \text{ mol L}^{-1} \text{ s}^{-1}$$

2008-J-9

- 10.26
- 4.89

5.09

• A: NaOH or Na or NaNH₂ or other strong base

B: I₂

C: Zn / H⁺

•

2008-J-11

• Tollens' reagent, [Ag(NH₃)₂]/OH⁻

The first compound will cause a silver precipitate to form. No reaction with the second compound as it does not contain hemi-acetal group.

$$Cr_2O_7^{2-}/H^+$$

Orange reagent will go green with first compound. No reaction with the second compound.

Br₂ solution.

First compound will decolourise the orange/brown Br₂ solution. No reaction with the second compound.

• ¹H nmr will detect different numbers of H's attached to the ring. The first compound has 3 olefinic resonances (each 1H) and 1 aliphatic resonance (2H) whilst the second compound has 4 aromatic resonances (each 1H).

IR. The first compound will give intense absorption at about 1740 cm⁻¹ due to the C=O group. The second compound will have no absorption in that region.

• Aromatic compound must be cyclic, planar, conjugated, and have $4n+2\pi$ electron NAD⁺ is aromatic. NADH is not.

Only NADH will react.

 NAD^+ will not react as the amide N is not basic and the ring N has no lone pair of electrons.

2008-J-13

•

Yes. Strong H-bonding and ion-dipole forces enable the peptide-water interactions to be more stable than interactions within either substance.

Basic. Due to the side chain on lysine, there is a greater number of basic groups than acidic groups overall.

10.2

2008-J-15

•

$$\begin{array}{c} O \\ H_2N-C-CH_2-CH-COOH \\ \oplus \begin{array}{c} NH_3 \end{array}$$

$$\begin{array}{c} \overset{\mathrm{O}}{\underset{\mathrm{NH}_{2}}{\parallel}} \\ \overset{\mathrm{O}}{\underset{\mathrm{NH}_{2}}{\parallel}} \\ \end{array}$$

$$NH_{4}^{\oplus}$$
 + $HO-C-CH_{2}-CH-COOH$ $\oplus NH_{3}$

$$NH_{3} \quad + \quad {}^{\Theta}O \overset{O}{\overset{||}{C}} - CH_{2} - CH - CO_{2}^{\Theta}$$

$$NH_{2}$$